Neurodevelopmental assessment of normocephalic children born to Zika virus exposed and unexposed pregnant people.


Journal

Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714

Informations de publication

Date de publication:
06 Dec 2023
Historique:
received: 31 05 2023
accepted: 20 11 2023
revised: 12 11 2023
medline: 7 12 2023
pubmed: 7 12 2023
entrez: 6 12 2023
Statut: aheadofprint

Résumé

Studies examining the association between in utero Zika virus (ZIKV) exposure and child neurodevelopmental outcomes have produced varied results. We aimed to assess neurodevelopmental outcomes among normocephalic children born from pregnant people enrolled in the Zika in Pregnancy in Honduras (ZIPH) cohort study, July-December 2016. Enrollment occurred during the first prenatal visit. Exposure was defined as prenatal ZIKV IgM and/or ZIKV RNA result at enrollment. Normocephalic children, >6 months old, were selected for longitudinal follow-up using the Bayley Scales of Infant and Toddler Development (BSID-III) and the Ages & Stages Questionnaires: Social-Emotional (ASQ:SE-2). One hundred fifty-two children were assessed; after exclusion, 60 were exposed and 72 were unexposed to ZIKV during pregnancy. Twenty children in the exposed group and 21 children in the unexposed group had a composite score <85 in any of the BSID-III domains. Although exposed children had lower cognitive and language scores, differences were not statistically significant. For ASQ:SE-2 assessment, there were not statistically significant differences between groups. This study found no statistically significant differences in the neurodevelopment of normocephalic children between in utero ZIKV exposed and unexposed. Nevertheless, long-term monitoring of children with in utero ZIKV exposure is warranted. This study found no statistically significant differences in the neurodevelopment in normocephalic children with in utero Zika virus exposure compared to unexposed children, although the exposed group showed lower cognitive and language scores that persisted after adjustment by maternal age and education and after excluding children born preterm and low birth weight from the analysis. Children with prenatal Zika virus exposure, including those normocephalic and have no evidence of abnormalities at birth, should be monitored for neurodevelopmental delays. Follow-up is important to be able to detect developmental abnormalities that might not be detected earlier in life.

Sections du résumé

BACKGROUND BACKGROUND
Studies examining the association between in utero Zika virus (ZIKV) exposure and child neurodevelopmental outcomes have produced varied results.
METHODS METHODS
We aimed to assess neurodevelopmental outcomes among normocephalic children born from pregnant people enrolled in the Zika in Pregnancy in Honduras (ZIPH) cohort study, July-December 2016. Enrollment occurred during the first prenatal visit. Exposure was defined as prenatal ZIKV IgM and/or ZIKV RNA result at enrollment. Normocephalic children, >6 months old, were selected for longitudinal follow-up using the Bayley Scales of Infant and Toddler Development (BSID-III) and the Ages & Stages Questionnaires: Social-Emotional (ASQ:SE-2).
RESULTS RESULTS
One hundred fifty-two children were assessed; after exclusion, 60 were exposed and 72 were unexposed to ZIKV during pregnancy. Twenty children in the exposed group and 21 children in the unexposed group had a composite score <85 in any of the BSID-III domains. Although exposed children had lower cognitive and language scores, differences were not statistically significant. For ASQ:SE-2 assessment, there were not statistically significant differences between groups.
CONCLUSIONS CONCLUSIONS
This study found no statistically significant differences in the neurodevelopment of normocephalic children between in utero ZIKV exposed and unexposed. Nevertheless, long-term monitoring of children with in utero ZIKV exposure is warranted.
IMPACT CONCLUSIONS
This study found no statistically significant differences in the neurodevelopment in normocephalic children with in utero Zika virus exposure compared to unexposed children, although the exposed group showed lower cognitive and language scores that persisted after adjustment by maternal age and education and after excluding children born preterm and low birth weight from the analysis. Children with prenatal Zika virus exposure, including those normocephalic and have no evidence of abnormalities at birth, should be monitored for neurodevelopmental delays. Follow-up is important to be able to detect developmental abnormalities that might not be detected earlier in life.

Identifiants

pubmed: 38057577
doi: 10.1038/s41390-023-02951-1
pii: 10.1038/s41390-023-02951-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.

Références

John, C. C., Black, M. M. & Nelson, C. A. Neurodevelopment: the impact of nutrition and inflammation during early to middle childhood in low resource settings. Pediatrics 139, S59–S71 (2017).
doi: 10.1542/peds.2016-2828H pubmed: 28562249 pmcid: 5694688
Krauer, F. et al. Zika virus infection as a cause of congenital brain abnormalities and Guillain–Barré syndrome: systematic review. PLoS Med. 14, e1002203 (2017).
doi: 10.1371/journal.pmed.1002203 pubmed: 28045901 pmcid: 5207634
Marbán-Castro, E. et al. Neurodevelopment in normocephalic children exposed to Zika virus in utero with no observable defects at birth: a systematic review with meta-analysis. Int. J. Environ. Res. Public Health 19, 7319 (2022).
doi: 10.3390/ijerph19127319 pubmed: 35742566 pmcid: 9223424
Lopes Moreira, M. E. et al. Neurodevelopment in infants exposed to Zika virus in utero. N. Engl. J. Med. 379, 2377–2379 (2018).
doi: 10.1056/NEJMc1800098 pubmed: 30575464 pmcid: 6478167
Nielsen-Saines, K. et al. Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nat. Med. 25, 1213–1217 (2019).
doi: 10.1038/s41591-019-0496-1 pubmed: 31285631 pmcid: 6689256
Cranston, J. S. et al. Association between antenatal exposure to Zika virus and anatomical and neurodevelopmental abnormalities in children. JAMA Netw. Open 3, e209303 (2020).
doi: 10.1001/jamanetworkopen.2020.9303 pubmed: 32633763 pmcid: 7341180
Mulkey, S. B. et al. Neurodevelopmental abnormalities in children with in utero Zika virus exposure without congenital Zika syndrome. JAMA Pediatr. 174, 269–276 (2020).
doi: 10.1001/jamapediatrics.2019.5204 pubmed: 31904798 pmcid: 6990858
Valdes, V. et al. Cognitive development of infants exposed to the Zika virus in Puerto Rico. JAMA Netw. Open. 2, e1914061 (2019).
doi: 10.1001/jamanetworkopen.2019.14061 pubmed: 31651970 pmcid: 6822087
Blackmon, K. et al. Neurodevelopment in normocephalic children with and without prenatal Zika virus exposure. Arch. Dis. Child. 107, 244–250 (2022).
doi: 10.1136/archdischild-2020-321031 pubmed: 34479857
Buekens, P. et al. Zika virus infection in pregnant women in Honduras: study protocol. Reprod. Health 13, 82 (2016).
doi: 10.1186/s12978-016-0200-6 pubmed: 27423687 pmcid: 4947515
Alger, J. et al. Microcephaly outcomes among Zika virus-infected pregnant women in Honduras. Am. J. Trop. Med. Hyg. 104, 1737–1740 (2021).
doi: 10.4269/ajtmh.20-1483 pubmed: 33724927 pmcid: 8103474
Santiago, G. A. et al. Performance of the trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat. Commun. 9, 1391 (2018).
doi: 10.1038/s41467-018-03772-1 pubmed: 29643334 pmcid: 5895813
Ward, M. J. et al. Zika virus and the World Health Organization criteria for determining recent infection using plaque reduction neutralization testing. Am. J. Trop. Med. Hyg. 99, 780–782 (2018).
doi: 10.4269/ajtmh.18-0237 pubmed: 29943723 pmcid: 6169159
Villar, J. et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn cross-sectional study of the INTERGROWTH-21st Project. Lancet 384, 857–868 (2014).
doi: 10.1016/S0140-6736(14)60932-6 pubmed: 25209487
Bayley, N. Bayley-III: Bayley Scales of Infant and Toddler Development 3rd edn (Pearson, 2006).
Bayley, N. Spanish Adaptation of the Bayley Scales of Infant and Toddler Development 3rd edn (Pearson Educación S.A, 2015).
Squires, J., Bricker, D. & Twombly, E. Ages & Stages Questionnaires®: Social-Emotional, Second Edition (ASQ®:SE-2). A Parent-Completed Child Monitoring System for Social-emotional Behaviors (Brookes Publishing Co, 2015).
WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 450, 76–85 (2006).
Ballot, D. E. et al. Use of the Bayley Scales of Infant and Toddler Development, Third Edition, to assess developmental outcome in infants and young children in an urban setting in South Africa. Int. Sch. Res. Notices. 2017, 1631760 (2017).
Squires, J., Bricker, D., Twombly, E., Murphy, K. & Hoselton, R. ASQ:SE-­2 Technical Report. Tech Rep. 28 (2015).
Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).
doi: 10.1016/j.jbi.2008.08.010 pubmed: 18929686
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Grant, R. et al. In utero Zika virus exposure and neurodevelopment at 24 months in toddlers normocephalic at birth: a cohort study. BMC Med. 19, 12 (2021).
doi: 10.1186/s12916-020-01888-0 pubmed: 33472606 pmcid: 7819189
Gerzson, L. R. et al. Neurodevelopment of nonmicrocephalic children, after 18 months of life, exposed prenatally to Zika virus. J. Child. Neurol. 35, 278–282 (2020).
doi: 10.1177/0883073819892128 pubmed: 31878830
Sobral da Silva, P. F. et al. Neurodevelopment in children exposed to Zika virus: what are the consequences for children who do not present with microcephaly at birth? Viruses 13, 1427 (2021).
doi: 10.3390/v13081427 pubmed: 34452293 pmcid: 8402706
Ticona, J. et al. Developmental outcomes in children exposed to Zika virus in utero from a Brazilian urban slum cohort study. PLoS Negl. Trop. Dis. 15, e0009162 (2021).
doi: 10.1371/journal.pntd.0009162
Gonzalez, M. et al. ZEN Study Team. Cohort profile: congenital Zika virus infection and child neurodevelopmental outcomes in the ZEN cohort study in Colombia. Epidemiol. Health. 42, e2020060 (2020).
Marbán-Castro, E. et al. Zika virus infection in pregnant travellers and impact on childhood neurodevelopment in the first two years of life: a prospective observational study. Travel Med. Infect. Dis. 40, 101985 (2021).
doi: 10.1016/j.tmaid.2021.101985 pubmed: 33601028
Faiçal, A. V. et al. Neurodevelopmental delay in normocephalic children with in utero exposure to Zika virus. BMJ Paediatr. Open 3, e000486 (2019).
doi: 10.1136/bmjpo-2019-000486 pubmed: 31338431 pmcid: 6613842
Tiene, S. F. et al. Early predictors of poor neurologic outcomes in a prospective cohort of infants with antenatal exposure to Zika virus. Pediatr. Infect. Dis. J. 41, 255–262 (2022).
doi: 10.1097/INF.0000000000003379 pubmed: 35144270 pmcid: 8901197
Key, A. P. et al. A prospective study of neurodevelopmental trends between 3 and 24 months in normocephalic infants with prenatal Zika virus exposure: evidence of emerging communication delays in the NATZIG cohort. Early Hum. Dev. 163, 105470 (2021).
doi: 10.1016/j.earlhumdev.2021.105470 pubmed: 34563832 pmcid: 8629952
Mercado-Reyes, M. et al. Pregnancy, birth, infant, and early childhood neurodevelopmental outcomes among a cohort of women with symptoms of Zika virus disease during pregnancy in three surveillance sites, project Vigilancia de Embarazadas con Zika (VEZ), Colombia, 2016-2018. Trop. Med. Infect. Dis. 6, 183 (2021).
doi: 10.3390/tropicalmed6040183 pubmed: 34698287 pmcid: 8544689
Peçanha, P. M. et al. Neurodevelopment of children exposed intra-uterus by Zika virus: a case series. PLoS ONE 15, e0229434 (2020).
doi: 10.1371/journal.pone.0229434 pubmed: 32109947 pmcid: 7048286
Aizawa, C. Y. P. et al. Neurodevelopment in the third year of life in children with antenatal ZIKV-exposure. Rev. Saúde Pública 55, 15 (2021).
doi: 10.11606/s1518-8787.2021055002798 pubmed: 33909869 pmcid: 8032323
Einspieler, C. et al. Association of infants exposed to prenatal Zika virus infection with their clinical, neurologic, and developmental status evaluated via the General Movement Assessment Tool. JAMA Netw. Open. 2, e187235 (2019).
doi: 10.1001/jamanetworkopen.2018.7235 pubmed: 30657537 pmcid: 6431234
Stringer, E. M. et al. Neurodevelopmental outcomes of children following in utero exposure to Zika in Nicaragua. Clin. Infect. Dis. 72, e146–e153 (2021).
doi: 10.1093/cid/ciaa1833 pubmed: 33515459 pmcid: 7935385
Mulkey, S. B. et al. Preschool neurodevelopment in Zika virus-exposed children without congenital Zika syndrome. Pediatr. Res. https://doi.org/10.1038/s41390-022-02373-5 (2022).
Griffin, I. et al. Zika virus IgM detection and neutralizing antibody profiles 12–19 months after illness onset. Emerg. Infect. Dis. 25, 299–303 (2019).
doi: 10.3201/eid2502.181286 pubmed: 30666931 pmcid: 6346474
Basile, A. J. et al. Performance of InBios ZIKV Detect™ 2.0 IgM Capture ELISA in two reference laboratories compared to the original ZIKV Detect™ IgM Capture ELISA. J. Virol. Methods 271, 113671 (2019).
doi: 10.1016/j.jviromet.2019.05.011 pubmed: 31181219 pmcid: 7176032
Waechter, R. et al. Improving neurodevelopment in Zika-exposed children: a randomized controlled trial. PLoS Negl. Trop. Dis. 16, e0010263 (2022).
doi: 10.1371/journal.pntd.0010263 pubmed: 35259172 pmcid: 8903297

Auteurs

Jackeline Alger (J)

Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras. jackelinealger@gmail.com.

María Luisa Cafferata (ML)

Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina. marialuisa.cafferata@gmail.com.

Raquel López (R)

Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras.

Lisa D Wiggins (LD)

National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia.

Allison Callejas (A)

Servicio de Neonatología, Departamento de Pediatría, Hospital Escuela, Tegucigalpa, Honduras.

Mario Castillo (M)

Servicio de Neonatología, Departamento de Pediatría, Hospital Escuela, Tegucigalpa, Honduras.

Jenny Fúnes (J)

Servicio de Neonatología, Departamento de Pediatría, Hospital Escuela, Tegucigalpa, Honduras.

Fátima Rico (F)

Departamento de Pediatría, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.

Diana Valencia (D)

National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia.

Douglas Varela (D)

Servicio de Neurología, Departamento de Pediatría, Hospital Escuela, Tegucigalpa, Honduras.

Zulma Alvarez (Z)

Unidad de Vigilancia de la Salud, Región Sanitaria Metropolitana del Distrito Central, Secretaría de Salud de Honduras, Tegucigalpa, Honduras.

Mabel Berrueta (M)

Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina.

Harry Bock (H)

Dirección General, Región Sanitaria Metropolitana del Distrito Central, currently Centro de Salud Dra. Nerza Paz, Región Sanitaria Metropolitana del Distrito Central, Secretaría de Salud de Honduras, Tegucigalpa, Honduras.

Carolina Bustillo (C)

Departamento de Ginecología y Obstetricia, Hospital Escuela, Tegucigalpa, Honduras.

Alejandra Calderón (A)

Centro de Salud Alonso Suazo, Región Sanitaria Metropolitana del Distrito Central, currently Centro de Salud Villanueva, Región Sanitaria Metropolitana del Distrito Central, Secretaría de Salud de Honduras, Tegucigalpa, Honduras.

Alvaro Ciganda (A)

Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina.

Jorge García-Aguilar (J)

Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras.

Kimberly García (K)

Centro de Investigaciones Genéticas, Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.

Luz Gibbons (L)

Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina.

Suzanne M Gilboa (SM)

National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia.

Emily W Harville (EW)

Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.

Gustavo Hernández (G)

Departamento de Pediatría, Hospital de Especialidades San Felipe, Tegucigalpa, Honduras.

Wendy López (W)

Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras.

Ivette Lorenzana (I)

Centro de Investigaciones Genéticas, Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.

Marco T Luque (MT)

Servicio de Infectología, Departamento de Pediatría, Hospital Escuela, Tegucigalpa, Honduras.

Carlos Maldonado (C)

Servicio de Oftalmología, Departamento de Pediatría, Hospital Escuela, Tegucigalpa, Honduras.

Cynthia Moore (C)

Goldbelt Professional Services, LLC, Chesapeake, VA, USA.

Carlos Ochoa (C)

Servicio de Maternidad, Hospital de Especialidades San Felipe, Tegucigalpa, Honduras.

Leda Parham (L)

Centro de Investigaciones Genéticas, Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.

Karla Pastrana (K)

Departamento de Ginecología y Obstetricia, Hospital Escuela, Tegucigalpa, Honduras.

Angel Paternina-Caicedo (A)

Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.

Heriberto Rodríguez (H)

Departamento de Ginecología y Obstetricia, Hospital Escuela, Tegucigalpa, Honduras.

Candela Stella (C)

Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina.

Ayzsa F Tannis (AF)

Eagle Global Scientific, LLC, San Antonio, TX, USA.

Dawn M Wesson (DM)

Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.

Concepción Zúniga (C)

Departamento de Vigilancia de la Salud, Hospital Escuela, Tegucigalpa, Honduras.

Van T Tong (VT)

National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia.

Pierre Buekens (P)

Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.

Classifications MeSH