Reduction of lens size in PAX6-related aniridia.


Journal

Experimental eye research
ISSN: 1096-0007
Titre abrégé: Exp Eye Res
Pays: England
ID NLM: 0370707

Informations de publication

Date de publication:
05 Dec 2023
Historique:
received: 23 11 2023
revised: 29 11 2023
accepted: 30 11 2023
pubmed: 7 12 2023
medline: 7 12 2023
entrez: 6 12 2023
Statut: aheadofprint

Résumé

Heterozygous mutation of PAX6 in humans leads to congenital aniridia (OMIM 106210) which is typified by congenital iris and foveal defects, and later onset glaucoma, aniridic keratopathy, and cataract. Mice heterozygous for Pax6 mutations phenocopy many aspects of aniridia including the iris defects, keratopathy and cataract, although Pax6 mutant mice have small lenses, a phenotype which is not typically reported in human aniridia, perhaps due to difficulties in measuring lens diameter during typical ophthalmic examinations as the lens periphery is shielded by the iris. In order to overcome this, records of patients diagnosed with congenital aniridia between April 2015 and May 2021 at the Necker-Enfants Malades Hospital, and genetically confirmed with a disease-causing PAX6 variant, were retrospectively reviewed for those with normal axial length whose iris defects allowed visualization of the lens margins and corneal diameter to allow calculation of a lens/corneal diameter ratio. This value was compared with values obtained from a cohort of patients with Sjödell grade IV oculocutaneous albinism type 1 (OCA1; OMIM 203100) which allowed visualization of the lens periphery via iris transillumination. This analysis revealed that patients with congenital aniridia had a significantly lower lens/corneal ratio when compared to those with albinism, suggesting that humans haploinsufficient for PAX6, like mice, rats, frogs, and zebrafish, exhibit reductions in lens size.

Identifiants

pubmed: 38056551
pii: S0014-4835(23)00367-6
doi: 10.1016/j.exer.2023.109746
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

109746

Informations de copyright

Copyright © 2023 Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest None.

Auteurs

Melinda K Duncan (MK)

Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. Electronic address: duncanm@udel.edu.

Alejandra Daruich (A)

Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.

Sophie Valleix (S)

INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP Centre, Paris, Université de Paris Cité, Fédération de Génétique et de Médecine Génomique, Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris, Cedex 14, France.

Dominique Bremond-Gignac (D)

Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.

Classifications MeSH