Regulation of the innate immune response and gut microbiome by p53.
gastrointestinal microbiome
innate immunity
lipocalin 2
mannose-binding lectin 2
p53
Journal
Cancer science
ISSN: 1349-7006
Titre abrégé: Cancer Sci
Pays: England
ID NLM: 101168776
Informations de publication
Date de publication:
04 Dec 2023
04 Dec 2023
Historique:
revised:
25
08
2023
received:
16
01
2023
accepted:
28
09
2023
medline:
5
12
2023
pubmed:
5
12
2023
entrez:
5
12
2023
Statut:
aheadofprint
Résumé
p53 is a key tumor suppressor mutated in half of human cancers. In recent years, p53 was shown to regulate a wide variety of functions. From the transcriptome analysis of 24 tissues of irradiated mice, we identified 553 genes markedly induced by p53. Gene Ontology (GO) enrichment analysis found that the most associated biological process was innate immunity. 16S rRNA-seq analysis revealed that Akkermansia, which has anti-inflammatory properties and is involved in the regulation of intestinal barrier integrity, was decreased in p53-knockout (p53
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : This research was supported by AMED under Grant Number
ID : JP23tm0624002
Organisme : This research was supported by AMED under Grant Number
ID : JP233fa627011
Organisme : This research was supported by AMED under Grant Number
ID : JP22zf0127009
Organisme : This research was supported by AMED under Grant Number
ID : JP21ck0106693h0001
Organisme : This research was supported by AMED under Grant Number
ID : JP21cm0106578
Organisme : This research was supported by AMED under Grant Number
ID : JP23ck0106642
Organisme : This research was supported by AMED under Grant Number
ID : JP19km0405215h0001
Organisme : This work was supported by JSPS KAKENHI Grant Number
ID : JP16H02676
Organisme : This work was supported by JSPS KAKENHI Grant Number
ID : JP19K22525
Organisme : This study was supported by grants from the Takeda Science Foundation, the Hirose Foundation, and an academic scholarship from the Japan International Cooperation Agency.
Informations de copyright
© 2023 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Références
Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36(28):3943-3956.
Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062-1078.
Boutelle AM, Attardi LD. p53 and tumor suppression: it takes a network. Trends Cell Biol. 2021;31(4):298-310.
Tanikawa C, Zhang Y-z, Yamamoto R, et al. The transcriptional landscape of p53 Signalling pathway. EBioMedicine. 2017;20:109-119.
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229-241.
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1-9.
Tsukada T, Tomooka Y, Takai S, et al. Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene. 1993;8:3313-3322.
Reikvam DH, Erofeev A, Sandvik A, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PloS One. 2011;6(3):e17996.
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.
Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216-W221.
Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46(4):562-576.
Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066-9071.
Reunanen J, Kainulainen V, Huuskonen L, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol. 2015;81(11):3655-3662.
Kaakoush NO. Insights into the role of Erysipelotrichaceae in the human host. Front Cell Infect Microbiol. 2015;5:84.
Yu D, Yang J, Jin M, et al. Fecal streptococcus alteration is associated with gastric cancer occurrence and liver metastasis. MBio. 2021;12(6):e0299421.
Tan J, Zhong Z, Tang Y, Qin W. Intestinal dysbiosis featuring abundance of streptococcus associates with Henoch-Schonlein purpura nephritis (IgA vasculitis with nephritis) in adult. BMC Nephrol. 2022;23(1):10.
Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-478.
Pant V, Xiong S, Wasylishen AR, et al. Transient enhancement of p53 activity protects from radiation-induced gastrointestinal toxicity. Proc Natl Acad Sci U S A. 2019;116(35):17429-17437.
Kirsch DG, Santiago PM, di Tomaso E, et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science. 2010;327(5965):593-596.
Leibowitz BJ, Qiu W, Liu H, Cheng T, Zhang L, Yu J. Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21. Mol Cancer Res. 2011;9(5):616-625.
Komarova EA, Kondratov RV, Wang K, et al. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene. 2004;23(19):3265-3271.
el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992;1(1):45-49.
Hammal F, de Langen P, Bergon A, Lopez F, Ballester B. ReMap 2022: a database of human, mouse, drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 2022;50(D1):D316-D325.
Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50(D1):D165-D173.
Coumou J, Wagemakers A, Narasimhan S, et al. The role of mannose binding lectin in the immune response against borrelia burgdorferi sensu lato. Sci Rep. 2019;9(1):1431.
Super M, Gillies SD, Foley S, et al. Distinct and overlapping functions of allelic forms of human mannose binding protein. Nat Genet. 1992;2(1):50-55.
Seyfarth J, Garred P, Madsen HO. Extra-hepatic transcription of the human mannose-binding lectin gene (mbl2) and the MBL-associated serine protease 1-3 genes. Mol Immunol. 2006;43(7):962-971.
Swale A, Miyajima F, Kolamunnage-Dona R, et al. Serum mannose-binding lectin concentration, but not genotype, is associated with Clostridium difficile infection recurrence: a prospective cohort study. Clin Infect Dis. 2014;59(10):1429-1436.
Yuen MF, Lau CS, Lau YL, Wong WM, Cheng CC, Lai CL. Mannose binding lectin gene mutations are associated with progression of liver disease in chronic hepatitis B infection. Hepatology. 1999;29(4):1248-1251.
Brouwer N, Dolman KM, van Houdt M, Sta M, Roos D, Kuijpers TW. Mannose-binding lectin (MBL) facilitates opsonophagocytosis of yeasts but not of bacteria despite MBL binding. J Immunol. 2008;180(6):4124-4132.
Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun. 2000;68(2):688-693.
Choteau L, Parny M, François N, et al. Role of mannose-binding lectin in intestinal homeostasis and fungal elimination. Mucosal Immunol. 2016;9(3):767-776.
Zhou J, Hu M, Li J, et al. Mannan-binding lectin regulates inflammatory cytokine production, proliferation, and cytotoxicity of human peripheral natural killer cells. Mediators Inflamm. 2019;2019:6738286.
Uemura K, Saka M, Nakagawa T, et al. L-MBP is expressed in epithelial cells of mouse small intestine. J Immunol. 2002;169(12):6945-6950.
Wagner S, Lynch NJ, Walter W, Schwaeble WJ, Loos M. Differential expression of the murine mannose-binding lectins a and C in lymphoid and nonlymphoid organs and tissues. J Immunol. 2003;170(3):1462-1465.
Wang F, Li Y, Yang C, et al. Mannan-binding lectin suppresses peptidoglycan-induced TLR2 activation and inflammatory responses. Mediators Inflamm. 2019;2019:1349784.
Shields-Cutler RR, Crowley JR, Miller CD, Stapleton AE, Cui W, Henderson JP. Human metabolome-derived cofactors are required for the antibacterial activity of Siderocalin in urine. J Biol Chem. 2016;291(50):25901-25910.
Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab. 2017;28(5):388-397.
Mallbris L, O'Brien KP, Hulthen A, et al. Neutrophil gelatinase-associated lipocalin is a marker for dysregulated keratinocyte differentiation in human skin. Exp Dermatol. 2002;11(6):584-591.
Xu MJ, Feng D, Wu H, et al. Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy: a critical role for IL-6/STAT3. Hepatology. 2015;61(2):692-702.
Berger T, Togawa A, Duncan GS, et al. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2006;103(6):1834-1839.
Guglani L, Gopal R, Rangel-Moreno J, et al. Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections. PloS One. 2012;7(11):e50052.
Playford RJ, Belo A, Poulsom R, et al. Effects of mouse and human lipocalin homologues 24p3/lcn2 and neutrophil gelatinase-associated lipocalin on gastrointestinal mucosal integrity and repair. Gastroenterology. 2006;131(3):809-817.
Singh V, Yeoh BS, Chassaing B, et al. Microbiota-inducible innate immune, siderophore binding protein lipocalin 2 is critical for intestinal homeostasis. Cell Mol Gastroenterol Hepatol. 2016;2(4):482-498 e6.
Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496-503.
Wu M, Wang F, Yang J, et al. The responses of the gut microbiota to MBL deficiency. Mol Immunol. 2020;122:99-108.
Moschen AR, Gerner RR, Wang J, et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe. 2016;19(4):455-469.
Karcher N, Nigro E, Puncochar M, et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 2021;22(1):209.
Png CW, Linden SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420-2428.
Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257-2261.
Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PloS One. 2013;8(8):e71108.
Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50(2):e450.
Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022;19(10):625-637.
Wang L, Tang L, Feng Y, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut. 2020;69(11):1988-1997.
Portincasa P, Bonfrate L, Vacca M, et al. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci. 2022;23(3):1105.
Schwitalla S, Ziegler PK, Horst D, et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 2013;23(1):93-106.