A case study evaluating the effect of clustering, publication bias, and heterogeneity on the meta-analysis estimates in implant dentistry.
implant survival
meta-analysis
methods
research design
sinus perforation
Journal
European journal of oral sciences
ISSN: 1600-0722
Titre abrégé: Eur J Oral Sci
Pays: England
ID NLM: 9504563
Informations de publication
Date de publication:
29 Nov 2023
29 Nov 2023
Historique:
received:
11
12
2022
accepted:
08
11
2023
medline:
30
11
2023
pubmed:
30
11
2023
entrez:
29
11
2023
Statut:
aheadofprint
Résumé
Meta-analyses may provide imprecise estimates when important meta-analysis parameters are not considered during the synthesis. The aim of this case study was to highlight the influence of meta-analysis parameters that can affect reported estimates using as an example pre-existing meta-analyses on the association between implant survival and sinus membrane perforation. PubMed was searched on 7 July 2021 for meta-analyses comparing implant failure in perforated and non-perforated sinus membranes. Primary studies identified in these meta-analyses were combined in a new random-effects model with odds ratios (ORs), confidence intervals (CIs), and prediction intervals reported. Using this new meta-analysis, further meta-analyses were then undertaken considering the clinical, methodological, and statistical heterogeneity of the primary studies, publication bias, and clustering effects. The meta-analyses with the greatest number and more homogeneous studies provided lower odds of implant failure in non-perforated sites (OR 0.49, 95 % CI = [0.26, 0.92]). However, when considering heterogeneity, publication bias, and clustering (number of implants), the confidence in these results was reduced. Interpretation of estimates reported in systematic reviews can vary depending on the assumptions made in the meta-analysis. Users of these analyses need to carefully consider the impact of heterogeneity, publication bias, and clustering, which can affect the size, direction, and interpretation of the reported estimates.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12962Informations de copyright
© 2023 The Authors. European Journal of Oral Sciences published by John Wiley & Sons Ltd on behalf of Scandinavian Division of the International Association for Dental Research.
Références
Faggion CM Jr. Is the evidence supporting dental procedures strong? A survey of Cochrane systematic reviews in oral health. J Evid-Based Dent Pract. 2012;12:131-134.e14.e14.
Pandis N, Fleming PS, Worthington H, Salanti G. The quality of the evidence according to GRADE is predominantly low or very low in oral health systematic reviews. PloS One. 2015;10:e0131644. https://doi.org/10.1371/journal.pone.0131644
Seehra J, Bertl K, Faggion CM Jr, Pandis N. The certainty of the evidence in oral health has not improved according to GRADE: a meta-epidemiological study. J Clin Epidemiol. 2021;142:29-37.
Koletsi D, Fleming PS, Michelaki I, Pandis N. Heterogeneity in Cochrane and non-Cochrane meta-analyses in orthodontics. J Dent. 2018;74:90-94.
Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. In: Cochrane handbook for systematic reviews of interventions [Internet]. John Wiley & Sons; 2008 [cited 2021 Jun 26]. p. 243-296. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470712184.ch9
Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I2 in assessing heterogeneity may mislead. BMC Med Res Methodol. 2008;8:79. https://doi.org/10.1186/1471-2288-8-79
von Hippel PT. The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Med Res Methodol. 2015;15:35. https://doi.org/10.1186/s12874-015-0024-z
Montori VM, Smieja M, Guyatt GH. Publication bias: a brief review for clinicians. Mayo Clin Proc. 2000;75:1284-1288.
Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized trials. Int J Epidemiol. 1999;28:319-326.
Altman DG, Bland JM. Statistics notes. Units of analysis. BMJ. 1997;314:1874.
Chia KS. “Significant-itis”-an obsession with the P-value. Scand J Work Environ Health. 1997;23:152-154.
Savitz DA. Is statistical significance testing useful in interpreting data? Reprod Toxicol Elmsford N. 1993;7:95-100.
Kerry SM, Bland JM. The intracluster correlation coefficient in cluster randomisation. BMJ. 1998;316:1455.
Hirsch JM, Ericsson I. Maxillary sinus augmentation using mandibular bone grafts and simultaneous installation of implants. A surgical technique. Clin Oral Implants Res. 1991;2:91-96.
Hernández-Alfaro F, Torradeflot MM, Marti C. Prevalence and management of Schneiderian membrane perforations during sinus-lift procedures. Clin Oral Implants Res. 2008;19:91-98.
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017 21;358:j4008. https://doi.org/10.1136/bmj.j4008
Cochrane Linked Data. PICO ontology [Internet]. [cited 2021 Oct 16]. Accessed 21 Nov 2023. Available from: https://linkeddata.cochrane.org/pico-ontology
Gagnier JJ, Moher D, Boon H, Beyene J, Bombardier C. Investigating clinical heterogeneity in systematic reviews: a methodologic review of guidance in the literature. BMC Med Res Methodol. 2012;12:111. https://doi.org/10.1186/1471-2288-12-111
Parker LA, Saez NG, Porta M, Hernández-Aguado I, Lumbreras B. The impact of including different study designs in meta-analyses of diagnostic accuracy studies. Eur J Epidemiol. 2013;28:713-720.
West SL, Gartlehner G, Mansfield AJ, Poole C, Tant E, Lenfestey N, et al. Comparative effectiveness review methods: clinical heterogeneity [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2010 [cited 2021 Jun 27]. (AHRQ Methods for Effective Health Care). Available from: http://www.ncbi.nlm.nih.gov/books/NBK53310/
Shea BJ, Bouter LM, Peterson J, Boers M, Andersson N, Ortiz Z, et al. External validation of a measurement tool to assess systematic reviews (AMSTAR). PloS One. 2007;2:e1350. https://doi.org/10.1371/journal.pone.0001350
Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549. https://doi.org/10.1136/bmj.d549
IntHout J, Ioannidis JPA, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open. 2016;6:e010247. https://doi.org/10.1136/bmjopen-2015-010247
Spineli LM, Pandis N. Prediction interval in random-effects meta-analysis. Am J Orthod Dentofacial Orthop. 2020;157:586-588.
Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22:2693-2710.
IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14:25. https://doi.org/10.1186/1471-2288-14-25
Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat Med. 2016;35:2503-2515.
Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10:83-98.
Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Chapter 23: Including variants on randomized trials. In: Higgins JPT, Eldridge S, Li T. (editors). Cochrane handbook for systematic reviews of interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from: www.training.cochrane.org/handbook
Atieh MA, Alsabeeha NH, Tawse-Smith A, Faggion CM Jr, Duncan WJ. Piezoelectric surgery vs rotary instruments for lateral maxillary sinus floor elevation: a systematic review and meta-analysis of intra- and postoperative complications. Int J Oral Maxillofac Implants. 2015;30:1262-1271.
Stacchi C, Troiano G, Berton F, Lombardi T, Rapani A, Englaro A, et al. Piezoelectric bone surgery for lateral sinus floor elevation compared with conventional rotary instruments: a systematic review, meta-analysis and trial sequential analysis. Int J Oral Implantol Berl Ger. 2020;13:109-121.
Al-Dajani M. Incidence, risk factors, and complications of Schneiderian membrane perforation in sinus lift surgery: a meta-analysis. Implant Dent. 2016;25:409-415.
Al-Moraissi E, Elsharkawy A, Abotaleb B, Alkebsi K, Al-Motwakel H. Does intraoperative perforation of Schneiderian membrane during sinus lift surgery causes an increased the risk of implants failure?: a systematic review and meta regression analysis. Clin Implant Dent Relat Res. 2018;20:882-889.
Kim JS, Choi SM, Yoon JH, Lee EJ, Yoon J, Kwon SH, et al. What affects postoperative sinusitis and implant failure after dental implant: a meta-analysis. Otolaryngol Head Neck Surg. 2019;160:974-984.
Page MJ, Sterne JAC, Higgins JPT, Egger M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: a review. Res Synth Methods. 2021;12:248-259.
Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295:676-680.
Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455-463.
Hoaglin DC. Misunderstandings about Q and “Cochran's Q test” in meta-analysis. Stat Med. 2016;35:485-495.
Viechtbauer W, Cheung MWL. Outlier and influence diagnostics for meta-analysis. Res Synth Methods. 2010;1:112-125.
Olkin I, Dahabreh IJ, Trikalinos TA. GOSH-a graphical display of study heterogeneity. Res Synth Methods. 2012;3:214-223.
Baujat B, Mahé C, Pignon JP, Hill C. A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med. 2002;21:2641-2652.
Efthimiou O. Practical guide to the meta-analysis of rare events. Evid Based Ment Health. 2018;21:72-76.
Campbell MK, Grimshaw JM. Cluster randomised trials: time for improvement. BMJ. 1998;317:1171-1172.
Fleming PS, Koletsi D, Polychronopoulou A, Eliades T, Pandis N. Are clustering effects accounted for in statistical analysis in leading dental specialty journals? J Dent. 2013;41:265-270.
Polychronopoulou A, Pandis N, Eliades T. Appropriateness of reporting statistical results in orthodontics: the dominance of P values over confidence intervals. Eur J Orthod. 2011;33:22-25.
Borenstein M, editor. Introduction to meta-analysis. Chichester, U.K: John Wiley & Sons; 2009. p. 421.
Esene I, Ngu J, Zoghby M, Soraloglu I, Sikod A, Kotb A, et al. Case series and descriptive cohort studies in neurosurgery: the confusion and solution. Childs Nerv Syst. 2014;30:1321-1332.
Grimes D. “Case-control” confusion: mislabeled reports in obstetrics and gynecology journals. Obstet Gynecol. 2009;114:1284-1286.
Dekkers OM, Groenwold RHH. Study design: what's in a name? Eur J Endocrinol. 2020;183:E11-E13.
Veroniki AA, Jackson D, Bender R, Kuss O, Langan D, Higgins JPT, et al. Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis. Res Synth Methods. 2019;10:23-43.
Campbell MK, Elbourne DR, Altman DG, CONSORT group. CONSORT statement: extension to cluster randomised trials. BMJ. 2004;328:702-708.