Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
22 Nov 2023
22 Nov 2023
Historique:
received:
18
10
2023
accepted:
20
11
2023
medline:
29
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
epublish
Résumé
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Identifiants
pubmed: 38024989
doi: 10.1039/d3ra07092a
pii: d3ra07092a
pmc: PMC10668918
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
34562-34575Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
The author(s) declare no competing interest.
Références
Adv Sci (Weinh). 2022 Dec;9(36):e2203527
pubmed: 36316226
Micromachines (Basel). 2022 Oct 19;13(10):
pubmed: 36296126
MRS Bull. 2023;48(3):283-290
pubmed: 36846314
Nanoscale. 2023 Mar 23;15(12):5579-5597
pubmed: 36883434
ACS Appl Bio Mater. 2021 Jun 21;4(6):5106-5121
pubmed: 35007059
J Mater Chem B. 2021 Jul 7;9(26):5195-5220
pubmed: 34128039
J Mater Chem B. 2014 Jan 21;2(3):262-271
pubmed: 32261505
ACS Nano. 2017 Jul 25;11(7):7006-7018
pubmed: 28665106
ACS Nano. 2020 Jul 28;14(7):8678-8688
pubmed: 32530269
Nature. 2016 Mar 24;531(7595):435-8
pubmed: 27008952
Int J Nanomedicine. 2023 Mar 01;18:1109-1128
pubmed: 36883070
Front Bioeng Biotechnol. 2021 Mar 11;9:603608
pubmed: 33777907
Dalton Trans. 2019 Sep 17;48(36):13869-13879
pubmed: 31483432
Theranostics. 2018 Aug 07;8(16):4491-4508
pubmed: 30214634
Nanoscale. 2020 Feb 14;12(6):3574-3592
pubmed: 32016223
Small. 2023 Apr;19(14):e2206716
pubmed: 36604987
Environ Res. 2023 Apr 1;222:115337
pubmed: 36682442
Chemosphere. 2022 Jan;286(Pt 1):131607
pubmed: 34311398
Biosens Bioelectron. 2022 Apr 15;202:113995
pubmed: 35065477
J Nanobiotechnology. 2023 Mar 2;21(1):73
pubmed: 36859311
Nano Lett. 2023 Feb 8;23(3):863-871
pubmed: 36651872
Chem Sci. 2019 Oct 2;10(44):10209-10230
pubmed: 32206247
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110790
pubmed: 32279790
Chem Commun (Camb). 2019 May 28;55(44):6241-6244
pubmed: 31086880
Theranostics. 2023 Jan 1;13(1):295-323
pubmed: 36593957
Toxicol Res (Camb). 2018 May 11;7(5):931-941
pubmed: 30310670
Heliyon. 2021 Apr 27;7(4):e06914
pubmed: 33997421
J Hazard Mater. 2022 Aug 15;436:129259
pubmed: 35739778
Chemosphere. 2022 Mar;290:133383
pubmed: 34952017
Adv Mater. 2023 Jun;35(23):e2301011
pubmed: 36990112
Small. 2023 Apr;19(14):e2206126
pubmed: 36517115
J Funct Biomater. 2022 Nov 03;13(4):
pubmed: 36412856
Adv Sci (Weinh). 2021 Dec;8(24):e2101043
pubmed: 34716674
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Oct 5;298:122762
pubmed: 37130482
Chem Rev. 2012 Feb 8;112(2):933-69
pubmed: 22098087
Biosensors (Basel). 2022 Oct 02;12(10):
pubmed: 36290957
ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7004-7020
pubmed: 33554591
Science. 2023 Mar 17;379(6637):1130-1135
pubmed: 36927013
Small. 2019 May;15(19):e1901190
pubmed: 30957964
ACS Biomater Sci Eng. 2019 Dec 9;5(12):6557-6569
pubmed: 33417807
Biosens Bioelectron. 2021 Jan 1;171:112730
pubmed: 33080462
Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111431
pubmed: 33321581
Chem Rec. 2023 Jun;23(6):e202300018
pubmed: 36912736
Oncotarget. 2017 Jun 6;8(23):38022-38043
pubmed: 28410237
ACS Nano. 2016 Mar 22;10(3):3674-84
pubmed: 26909865
Nanomaterials (Basel). 2022 May 24;12(11):
pubmed: 35683652
Compr Rev Food Sci Food Saf. 2020 Jul;19(4):1397-1419
pubmed: 33337086
Environ Res. 2022 Mar;204(Pt D):112384
pubmed: 34785207
Sensors (Basel). 2020 Sep 22;20(18):
pubmed: 32971879
Adv Mater. 2017 Jun;29(23):
pubmed: 28370555
Angew Chem Int Ed Engl. 2022 Sep 12;61(37):e202207026
pubmed: 35791061
ACS Biomater Sci Eng. 2021 Jun 14;7(6):1900-1913
pubmed: 33851823
Adv Mater. 2021 Oct;33(39):e2103393
pubmed: 34396592
RSC Adv. 2023 Mar 24;13(14):9665-9677
pubmed: 36968045
Biosens Bioelectron. 2018 Dec 15;121:243-249
pubmed: 30219724
Chem Commun (Camb). 2019 Apr 2;55(28):4059-4062
pubmed: 30882124
Chemosphere. 2023 Feb;313:137497
pubmed: 36493892
Nanomaterials (Basel). 2022 Mar 01;12(5):
pubmed: 35269317
Nanomaterials (Basel). 2022 Jan 16;12(2):
pubmed: 35055294
Int J Nanomedicine. 2022 May 23;17:2367-2395
pubmed: 35637838
Front Chem. 2022 Aug 26;10:971747
pubmed: 36092660
Small Methods. 2023 Aug;7(8):e2300054
pubmed: 37086114
J R Soc Interface. 2013 Feb 20;10(82):20120939
pubmed: 23427093
Angew Chem Int Ed Engl. 2018 Apr 23;57(18):4891-4896
pubmed: 29451722
Colloids Surf B Biointerfaces. 2023 May;225:113266
pubmed: 36947901
ChemMedChem. 2020 Oct 5;15(19):1766-1775
pubmed: 32715651
Materials (Basel). 2021 Nov 28;14(23):
pubmed: 34885431
RSC Adv. 2022 Jul 6;12(30):19590-19610
pubmed: 35865615
Biosens Bioelectron. 2022 Jun 1;205:113943
pubmed: 35219021
Talanta. 2023 Dec 1;265:124848
pubmed: 37352782
Environ Res. 2021 Oct;201:111592
pubmed: 34175291
Adv Sci (Weinh). 2018 Jul 19;5(10):1800518
pubmed: 30356929
Materials (Basel). 2021 Aug 04;14(16):
pubmed: 34442891
J Med Chem. 2014 Jul 10;57(13):5679-85
pubmed: 24922463
J Hazard Mater. 2017 Oct 5;339:1-8
pubmed: 28601597
ACS Biomater Sci Eng. 2020 Feb 10;6(2):1008-1016
pubmed: 33464845
Nanoscale. 2020 Jan 23;12(3):1325-1338
pubmed: 31872839
Chem Soc Rev. 2014 Aug 21;43(16):5415-8
pubmed: 25011480
Adv Mater. 2023 Aug;35(31):e2300422
pubmed: 37095074
Nano Converg. 2021 Mar 16;8(1):9
pubmed: 33723803
RSC Med Chem. 2023 Sep 1;14(10):1914-1933
pubmed: 37859709
Pharmaceutics. 2022 Jan 21;14(2):
pubmed: 35213987
Curr Med Chem. 2020;27(35):5949-5969
pubmed: 31215374
ACS Appl Mater Interfaces. 2018 Aug 22;10(33):27631-27643
pubmed: 30058793
Environ Res. 2019 Sep;176:108488
pubmed: 31295665