A Quick Method to Analyze Peptide-Regulated Anthocyanin Biosynthesis.
Anthocyanins
CLEL peptides
Gene expression
Light-stress
Photometric analysis
RNA extraction
Stress response
cDNA synthesis
qPCR
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
30
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
ppublish
Résumé
Post-translationally modified peptides are now recognized as important regulators of plant stress responses. We recently identified the sulfated CLE-LIKE6 (CLEL6) peptide as a negative regulator of anthocyanin biosynthesis in dark-grown and in light-stressed Arabidopsis seedlings. The function of CLEL6 depends on proteolytic processing by subtilisin-like serine proteinase SBT6.1, and on tyrosine sulfation by tyrosylprotein sulfotransferase (TPST), and CLEL6 signaling relies on the ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptor family. In this chapter, we describe in detail how to quantify peptide-regulated and stress-induced anthocyanin biosynthesis. We include protocols for peptide treatment of Arabidopsis seedlings and growth under different stress conditions, for the extraction and quantification of anthocyanins, and for the expression analysis of anthocyanin biosynthetic genes.
Identifiants
pubmed: 38019432
doi: 10.1007/978-1-0716-3511-7_11
doi:
Substances chimiques
Anthocyanins
0
Peptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
143-155Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083. https://doi.org/10.1105/tpc.7.7.1071
doi: 10.1105/tpc.7.7.1071
pubmed: 12242398
pmcid: 160913
Pervaiz T, Songtao J, Faghihi F et al (2017) Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J Plant Biochem Physiol 5:1000187. https://doi.org/10.4172/2329-9029.1000187
doi: 10.4172/2329-9029.1000187
Shao L, Shu Z, Sun S-L et al (2007) Antioxidation of anthocyanins in photosynthesis under high temperature stress. J Int Plant Biol 49:1341–1351. https://doi.org/10.1111/j.1744-7909.2007.00527.x
doi: 10.1111/j.1744-7909.2007.00527.x
Nakabayashi R, Yonekura-Sakakibara K, Urano K et al (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379. https://doi.org/10.1111/tpj.12388
doi: 10.1111/tpj.12388
pubmed: 24274116
Steyn WJ, Wand SJE, Holcroft DM et al (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361. https://doi.org/10.1046/j.1469-8137.2002.00482.x
doi: 10.1046/j.1469-8137.2002.00482.x
pubmed: 33873306
Xu Z, Mahmood K, Rothstein SJ (2017) ROS induces anthocyanin production via late biosynthetic genes and nthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol 58:1364–1377. https://doi.org/10.1093/pcp/pcx073
doi: 10.1093/pcp/pcx073
pubmed: 28586465
Yan H, Pei X, Zhang H et al (2021) MYB-mediated regulation of anthocyanin biosynthesis. Int J Mol Sci 22(6):3103
doi: 10.3390/ijms22063103
pubmed: 33803587
pmcid: 8002911
Deng X-W, Matsui M, Wei N et al (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G
doi: 10.1016/0092-8674(92)90555-q
pubmed: 1423630
Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994. https://doi.org/10.1111/j.1365-313X.2006.03021.x
doi: 10.1111/j.1365-313X.2006.03021.x
pubmed: 17319847
Loreti E, Povero G, Novi G et al (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016. https://doi.org/10.1111/j.1469-8137.2008.02511.x
doi: 10.1111/j.1469-8137.2008.02511.x
pubmed: 18537890
Bühler E, Fahrbach E, Schaller A et al (2022) The sulfated peptide CLEL6 is a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana. bioRxiv https://doi.org/10.1101/2022.11.23.517704
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
pubmed: 11846609
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45
doi: 10.1093/nar/29.9.e45
pubmed: 11328886
pmcid: 55695
Flohr AM, Hackenbeck T, Schlueter C et al (2003) DNase I treatment of cDNA first strands prevents RT-PCR amplification of contaminating DNA sequences. BioTechniques 35:920–926. https://doi.org/10.2144/03355bm03
doi: 10.2144/03355bm03
pubmed: 14628663
Zhao D, Zheng Y, Yang L et al (2021) The transcription factor AtGLK1 acts upstream of MYBL2 to genetically regulate sucrose-induced anthocyanin biosynthesis in Arabidopsis. BMC Plant Biol 21:242. https://doi.org/10.1186/s12870-021-03033-2
doi: 10.1186/s12870-021-03033-2
pubmed: 34049482
pmcid: 8162001