Customized-individually-made origin® implants in total knee arthroplasty allow a reliable solution for accurate reproduction of planned implant positioning.
Accuracy rate
Customized Individually Made TKR
HKA alignment
Implant positioning
Outliers
Preoperative planning
Radiological measurements
Journal
Journal of experimental orthopaedics
ISSN: 2197-1153
Titre abrégé: J Exp Orthop
Pays: Germany
ID NLM: 101653750
Informations de publication
Date de publication:
28 Nov 2023
28 Nov 2023
Historique:
received:
06
09
2023
accepted:
17
11
2023
medline:
28
11
2023
pubmed:
28
11
2023
entrez:
28
11
2023
Statut:
epublish
Résumé
To evaluate the accuracy and reproducibility of a patient-specific, customized individually made (CIM) total knee replacement (TKR) using the ORIGIN® prosthesis. This was a prospective study conducted at a University Hospital from January 15, 2019, to April 30, 2021. The study included patients planned for an ORIGIN® CIM TKR procedure. Exclusion criteria included revision surgery, severe deformity, stiffness, or laxity. Evaluations were carried out using computed tomography scans performed 8 weeks preoperatively and 6 weeks postoperatively. The primary outcome measurements were the preoperative, planned, and postoperative CT scan alignment measurements including the Hip-Knee-Ankle (HKA) angle, mechanical Medial Distal Femoral articular surface Angle (mMDFA, distal alpha angle), Posterior Distal femoral articular surface angle (PDFA, posterior alpha angle), mechanical Medial Proximal Tibial articular surface Angle (mMPTA, beta angle) and posterior proximal tibial angle (PPTA). Secondary outcomes included the accuracy of implant positioning with percentage of outliers at 2° and 3° RESULTS: The study encompassed 51 knees from 50 patients with mean age of 68.1 (SD = 8.89). The overall HKA angle deviated by -0.93° [95% CI: -1.45; -0.43], and the PDFA angle by -0.61° [95% CI: -1.07; -0.15], while the mMPTA exceeded planned values by 1.00° [95% CI: 0.57; 1.43]. The 3° outliers rate ranged from 3.9% for the mMPTA to 7.8% for the HKA alignment, with no outliers in mMDFA and PPTA. Similarly, the 2° outliers rate ranged from 15.7% for both the PDFA angle and mMPTA to 19.6% for the HKA alignment. The Bland-Altman plots further emphasized the precision of planned and post-operative angles across all measurements. The CIM TKR showed high accuracy and reproducibility, closely matching preoperative planning. The weakest accuracy at 3°-outliers is in the reproduction of the HKA alignment at 92.2% (range for all angle: 92.2-100%). Similarly, the weakest accuracy at 2°-outliers is in the reproduction of the HKA alignment at 80.4% (range for all angles: 80.4-92.2%).
Identifiants
pubmed: 38015319
doi: 10.1186/s40634-023-00706-9
pii: 10.1186/s40634-023-00706-9
pmc: PMC10684845
doi:
Types de publication
Journal Article
Langues
eng
Pagination
123Informations de copyright
© 2023. The Author(s).
Références
Orthopedics. 2010 Feb;33(2):76-80
pubmed: 20192137
J Knee Surg. 2017 Sep;30(7):668-674
pubmed: 27907935
Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10):2271-80
pubmed: 23948721
J Pers Med. 2022 Jan 31;12(2):
pubmed: 35207682
J Arthroplasty. 2013 Mar;28(3):469-73
pubmed: 23151366
Arch Orthop Trauma Surg. 2021 Dec;141(12):2195-2203
pubmed: 34272973
J Knee Surg. 2018 Sep;31(8):792-796
pubmed: 29241274
Sci Rep. 2023 Feb 27;13(1):3317
pubmed: 36849812
J Pers Med. 2021 Jun 12;11(6):
pubmed: 34204771
J Arthroplasty. 2017 Jul;32(7):2133-2140
pubmed: 28302462
Arch Orthop Trauma Surg. 2020 Jun;140(6):793-800
pubmed: 32124032
J Knee Surg. 2019 Jun;32(6):499-505
pubmed: 29801179
Eur J Orthop Surg Traumatol. 2023 May;33(4):1411-1420
pubmed: 35701554
Knee Surg Sports Traumatol Arthrosc. 2022 Feb;30(2):464-475
pubmed: 32681286
Orthop J Sports Med. 2015 Jun 24;3(7):2325967115590379
pubmed: 26673037
Arthroplast Today. 2021 Jul 05;10:24-26
pubmed: 34277907
Int Orthop. 2019 Nov;43(11):2529-2538
pubmed: 31227853
J Arthroplasty. 2023 Mar;38(3):594-599
pubmed: 36252743
Knee Surg Sports Traumatol Arthrosc. 2022 Feb;30(2):721-733
pubmed: 33492410
J Arthroplasty. 2017 Apr;32(4):1344-1350
pubmed: 27814916
Orthop Surg. 2020 Dec;12(6):1567-1578
pubmed: 33099892
J Arthroplasty. 2014 Nov;29(11):2100-3
pubmed: 25092562
J Knee Surg. 2021 Aug;34(10):1085-1091
pubmed: 32018278
Knee Surg Sports Traumatol Arthrosc. 2020 Nov;28(11):3639-3646
pubmed: 32240345
Arch Orthop Trauma Surg. 2021 Dec;141(12):2217-2225
pubmed: 34269890
Orthop Traumatol Surg Res. 2017 Nov;103(7):1047-1056
pubmed: 28864235
Knee Surg Sports Traumatol Arthrosc. 2022 Sep;30(9):2948-2957
pubmed: 35149877
Knee Surg Sports Traumatol Arthrosc. 2022 Feb;30(2):447-455
pubmed: 32676744
Knee Surg Sports Traumatol Arthrosc. 2017 Jun;25(6):1778-1783
pubmed: 27306985
Clin Orthop Relat Res. 2012 Jan;470(1):45-53
pubmed: 21656315
J Arthroplasty. 2012 Jun;27(6):1177-82
pubmed: 22333865
Knee. 2015 Dec;22(6):624-9
pubmed: 27092379
Clin Orthop Relat Res. 2012 Jan;470(1):172-85
pubmed: 21948324
J Bone Joint Surg Am. 2010 May;92(5):1115-21
pubmed: 20439656