Robust scoring of selective drug responses for patient-tailored therapy selection.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
23 Nov 2023
Historique:
received: 24 03 2023
accepted: 10 08 2023
medline: 24 11 2023
pubmed: 24 11 2023
entrez: 23 11 2023
Statut: aheadofprint

Résumé

Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.

Identifiants

pubmed: 37996540
doi: 10.1038/s41596-023-00903-x
pii: 10.1038/s41596-023-00903-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 101057442
Organisme : Academy of Finland (Suomen Akatemia)
ID : 310507
Organisme : Academy of Finland (Suomen Akatemia)
ID : 313267
Organisme : Academy of Finland (Suomen Akatemia)
ID : 313267
Organisme : Academy of Finland (Suomen Akatemia)
ID : 326238
Organisme : Academy of Finland (Suomen Akatemia)
ID : 340141
Organisme : Academy of Finland (Suomen Akatemia)
ID : 344698
Organisme : Academy of Finland (Suomen Akatemia)
ID : 345803
Organisme : Academy of Finland (Suomen Akatemia)
ID : 336666
Organisme : Academy of Finland (Suomen Akatemia)
ID : 326588
Organisme : Academy of Finland (Suomen Akatemia)
ID : 312413
Organisme : Academy of Finland (Suomen Akatemia)
ID : 353177
Organisme : Academy of Finland (Suomen Akatemia)
ID : 320185
Organisme : Academy of Finland (Suomen Akatemia)
ID : 334781
Organisme : Ministry of Health and Care Services | Helse Sør-Øst RHF (Southern and Eastern Norway Regional Health Authority)
ID : 2020026
Organisme : Ministry of Health and Care Services | Helse Sør-Øst RHF (Southern and Eastern Norway Regional Health Authority)
ID : 2017064
Organisme : Ministry of Health and Care Services | Helse Sør-Øst RHF (Southern and Eastern Norway Regional Health Authority)
ID : 2018012
Organisme : Ministry of Health and Care Services | Helse Sør-Øst RHF (Southern and Eastern Norway Regional Health Authority)
ID : 2019096
Organisme : NordForsk
ID : 96782
Organisme : Kreftforeningen (Norwegian Cancer Society)
ID : 182524
Organisme : Kreftforeningen (Norwegian Cancer Society)
ID : 208012
Organisme : Norges Forskningsråd (Research Council of Norway)
ID : 262652

Informations de copyright

© 2023. Springer Nature Limited.

Références

Kornauth, C. et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 12, 372–387 (2022).
doi: 10.1158/2159-8290.CD-21-0538 pubmed: 34635570
Malani, D. et al. Implementing a functional precision medicine tumor board for acute myeloid leukemia. Cancer Discov. 12, 388–401 (2022).
doi: 10.1158/2159-8290.CD-21-0410 pubmed: 34789538
Letai, A., Bhola, P. & Welm, A. L. Functional precision oncology: testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 40, 26–35 (2022).
doi: 10.1016/j.ccell.2021.12.004 pubmed: 34951956
Tognon, C. E., Sears, R. C., Mills, G. B., Gray, J. W. & Tyner, J. W. Ex vivo analysis of primary tumor specimens for evaluation of cancer therapeutics. Annu. Rev. Cancer Biol. 5, 39–57 (2021).
doi: 10.1146/annurev-cancerbio-043020-125955 pubmed: 34222745
Flobak, Å., Skånland, S. S., Hovig, E., Taskén, K. & Russnes, H. G. Functional precision cancer medicine: drug sensitivity screening enabled by cell culture models. Trends Pharmacol. Sci. 43, 973–985 (2022).
doi: 10.1016/j.tips.2022.08.009 pubmed: 36163057
Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).
doi: 10.1038/nature14119 pubmed: 25686603
Hatzis, C. et al. Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res. 74, 4016–4023 (2014).
doi: 10.1158/0008-5472.CAN-14-0725 pubmed: 25015668 pmcid: 4119520
Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013).
doi: 10.1038/nature12831 pubmed: 24284626 pmcid: 4237165
Yadav, B. et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci. Rep. 4, 5193 (2014).
doi: 10.1038/srep05193 pubmed: 24898935 pmcid: 4046135
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
doi: 10.1038/nature11003 pubmed: 22460905 pmcid: 3320027
Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).
doi: 10.1038/nature11005 pubmed: 22460902 pmcid: 3349233
Mpindi, J. P. et al. Consistency in drug response profiling. Nature 540, E5–E6 (2016).
doi: 10.1038/nature20171 pubmed: 27905421
Pemovska, T. et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 3, 1416–1429 (2013).
doi: 10.1158/2159-8290.CD-13-0350 pubmed: 24056683
Yin, Y. et al. Functional testing to characterize and stratify PI3K inhibitor responses in chronic lymphocytic leukemia. Clin. Cancer Res. 28, 4444–4455 (2022).
doi: 10.1158/1078-0432.CCR-22-1221 pubmed: 35998013 pmcid: 9588626
Andersen, A. N. et al. Clinical forecasting using ex vivo drug sensitivity profiling of acute myeloid leukemia. Preprint at https://www.biorxiv.org/content/10.1101/2022.10.11.509866v2 (2023).
Bottomly, D. et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 40, 850–864.e9 (2022).
doi: 10.1016/j.ccell.2022.07.002 pubmed: 35868306 pmcid: 9378589
Potdar, S. et al. Breeze 2.0: an interactive web-tool for visual analysis and comparison of drug response data. Nucleic Acids Res. 51, W57–W61 (2023).
doi: 10.1093/nar/gkad390 pubmed: 37178002 pmcid: 10320147
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
doi: 10.1093/bioinformatics/bts034 pubmed: 22257669 pmcid: 3307112
Yamada, S. et al. Clinical relevance of in vitro chemoresistance in childhood acute myeloid leukemia. Leukemia 15, 1892–1897 (2001).
doi: 10.1038/sj.leu.2402305 pubmed: 11753610
Volm, M. & Efferth, T. Prediction of cancer drug resistance and implications for personalized medicine. Front. Oncol. 5, 282 (2015).
doi: 10.3389/fonc.2015.00282 pubmed: 26734568 pmcid: 4681783
Gupta, A., Gautam, P., Wennerberg, K. & Aittokallio, T. A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening. Commun. Biol. 3, 42 (2020).
doi: 10.1038/s42003-020-0765-z pubmed: 31974521 pmcid: 6978361
Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016).
doi: 10.1038/nmeth.3853 pubmed: 27135972 pmcid: 4887336
Murumagi, A. et al. Drug response profiles in patient-derived cancer cells across histological subtypes of ovarian cancer: real-time therapy tailoring for a patient with low-grade serous carcinoma. Br. J. Cancer 128, 678–690 (2023).
doi: 10.1038/s41416-022-02067-z pubmed: 36476658
Heinemann, T. et al. Deep morphology learning enhances ex vivo drug profiling-based precision medicine. Blood Cancer Discov. 3, 502–515 (2022).
doi: 10.1158/2643-3230.BCD-21-0219 pubmed: 36125297 pmcid: 9894727
Kropivsek, K. et al. Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. Nat. Cancer 4, 734–753 (2023).
doi: 10.1038/s43018-023-00544-9 pubmed: 37081258 pmcid: 10212768
Kuusanmäki, H. et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica 105, 708–720 (2020).
doi: 10.3324/haematol.2018.214882 pubmed: 31296572 pmcid: 7049363
Ianevski, A. et al. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci. Adv. 7, eabe4038 (2021).
doi: 10.1126/sciadv.abe4038 pubmed: 33608276 pmcid: 7895436
Goh, J. et al. An ex vivo platform to guide drug combination treatment in relapsed/refractory lymphoma. Sci. Transl. Med. 14, eabn7824 (2022).
doi: 10.1126/scitranslmed.abn7824 pubmed: 36260690
He, L. et al. Patient-customized drug combination prediction and testing for T-cell prolymphocytic leukemia patients. Cancer Res. 78, 2407–2418 (2018).
doi: 10.1158/0008-5472.CAN-17-3644 pubmed: 29483097
He, L. et al. Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer. Brief. Bioinform. 22, bbab272 (2021).
doi: 10.1093/bib/bbab272 pubmed: 34343245 pmcid: 8574973
Hanes, R. et al. screenwerk: a modular tool for the design and analysis of drug combination screens. Bioinformatics 39, btac840 (2023).
doi: 10.1093/bioinformatics/btac840 pubmed: 36573326
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS One 10, e0146021 (2015).
doi: 10.1371/journal.pone.0146021 pubmed: 26717316 pmcid: 4696819
Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 61, 611–622 (1999).
doi: 10.1111/1467-9868.00196
Lee, S. H. R. et al. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat. Med. 29, 170–179 (2023).
doi: 10.1038/s41591-022-02112-7 pubmed: 36604538 pmcid: 9873558
Kuusanmäki, H. et al. Ex vivo venetoclax sensitivity testing predicts treatment response in acute myeloid leukemia. Haematologica 108, 1768–1781 (2023).
doi: 10.3324/haematol.2022.281692 pubmed: 36519325
Majumder, M. M. et al. Identification of precision treatment strategies for relapsed/refractory multiple myeloma by functional drug sensitivity testing. Oncotarget 8, 56338–56350 (2017).
doi: 10.18632/oncotarget.17630 pubmed: 28915594 pmcid: 5593565
Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. The Lond., Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901).
doi: 10.1080/14786440109462720

Auteurs

Yingjia Chen (Y)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Liye He (L)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Aleksandr Ianevski (A)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Pilar Ayuda-Durán (P)

Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.

Swapnil Potdar (S)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Jani Saarela (J)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Juho J Miettinen (JJ)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Sari Kytölä (S)

Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.

Susanna Miettinen (S)

Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.

Mikko Manninen (M)

Orton Orthopaedic Hospital, Helsinki, Finland.

Caroline A Heckman (CA)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Jorrit M Enserink (JM)

Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.

Krister Wennerberg (K)

Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.

Tero Aittokallio (T)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. tero.aittokallio@helsinki.fi.
iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. tero.aittokallio@helsinki.fi.
Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. tero.aittokallio@helsinki.fi.
Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway. tero.aittokallio@helsinki.fi.

Classifications MeSH