Prediction of therapeutic intensity level from automatic multiclass segmentation of traumatic brain injury lesions on CT-scans.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 Nov 2023
Historique:
received: 16 05 2023
accepted: 07 11 2023
medline: 27 11 2023
pubmed: 18 11 2023
entrez: 18 11 2023
Statut: epublish

Résumé

The prediction of the therapeutic intensity level (TIL) for severe traumatic brain injury (TBI) patients at the early phase of intensive care unit (ICU) remains challenging. Computed tomography images are still manually quantified and then underexploited. In this study, we develop an artificial intelligence-based tool to segment brain lesions on admission CT-scan and predict TIL within the first week in the ICU. A cohort of 29 head injured patients (87 CT-scans; Dataset1) was used to localize (using a structural atlas), segment (manually or automatically with or without transfer learning) 4 or 7 types of lesions and use these metrics to train classifiers, evaluated with AUC on a nested cross-validation, to predict requirements for TIL sum of 11 points or more during the 8 first days in ICU. The validation of the performances of both segmentation and classification tasks was done with Dice and accuracy scores on a sub-dataset of Dataset1 (internal validation) and an external dataset of 12 TBI patients (12 CT-scans; Dataset2). Automatic 4-class segmentation (without transfer learning) was not able to correctly predict the apparition of a day of extreme TIL (AUC = 60 ± 23%). In contrast, manual quantification of volumes of 7 lesions and their spatial location provided a significantly better prediction power (AUC = 89 ± 17%). Transfer learning significantly improved the automatic 4-class segmentation (DICE scores 0.63 vs 0.34) and trained more efficiently a 7-class convolutional neural network (DICE = 0.64). Both validations showed that segmentations based on transfer learning were able to predict extreme TIL with better or equivalent accuracy (83%) as those made with manual segmentations. Our automatic characterization (volume, type and spatial location) of initial brain lesions observed on CT-scan, publicly available on a dedicated computing platform, could predict requirements for high TIL during the first 8 days after severe TBI. Transfer learning strategies may improve the accuracy of CNN-based segmentation models.Trial registrations Radiomic-TBI cohort; NCT04058379, first posted: 15 august 2019; Radioxy-TC cohort; Health Data Hub index F20220207212747, first posted: 7 February 2022.

Identifiants

pubmed: 37978266
doi: 10.1038/s41598-023-46945-9
pii: 10.1038/s41598-023-46945-9
pmc: PMC10656472
doi:

Banques de données

ClinicalTrials.gov
['NCT04058379']

Types de publication

Clinical Trial Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20155

Subventions

Organisme : Fondation des Gueules Cassées
ID : 17-2019
Organisme : Fondation des Gueules Cassées
ID : 15-2020
Organisme : Fondation des Gueules Cassées
ID : 13-2021
Organisme : Fondation ARC pour la Recherche sur le Cancer
ID : SIGN'IT20181007790

Informations de copyright

© 2023. The Author(s).

Références

Diagnostics (Basel). 2020 Sep 30;10(10):
pubmed: 33007929
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312
pubmed: 26978662
J Neurotrauma. 2016 Oct 1;33(19):1768-1774
pubmed: 26866876
J Vis Exp. 2013 Apr 13;(74):
pubmed: 23604268
BMC Med Imaging. 2015 Aug 12;15:29
pubmed: 26263899
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
J Neurotrauma. 2010 Feb;27(2):325-30
pubmed: 19895192
Med Image Anal. 2019 May;54:280-296
pubmed: 30959445
Lancet Digit Health. 2020 Jun;2(6):e314-e322
pubmed: 33328125
BMJ. 2008 Feb 23;336(7641):425-9
pubmed: 18270239
Lancet. 2018 Dec 1;392(10162):2388-2396
pubmed: 30318264
BMC Med. 2014 Oct 22;12:186
pubmed: 25339549
PLoS One. 2021 Jul 21;16(7):e0254062
pubmed: 34288935
Int J Environ Res Public Health. 2021 Jun 16;18(12):
pubmed: 34208596
Med Image Anal. 2017 Feb;36:61-78
pubmed: 27865153
Front Neuroinform. 2020 Nov 16;14:594799
pubmed: 33304261
J Neurotrauma. 2005 Oct;22(10):1025-39
pubmed: 16238481
J Neurotrauma. 2011 Feb;28(2):177-87
pubmed: 21162610
Front Neurol. 2021 Jun 10;12:666875
pubmed: 34177773
Medicina (Kaunas). 2021 Feb 01;57(2):
pubmed: 33535407
BMC Bioinformatics. 2006 Feb 23;7:91
pubmed: 16504092
IEEE Trans Med Imaging. 2013 Jan;32(1):110-8
pubmed: 23014715
Lancet Neurol. 2017 Dec;16(12):987-1048
pubmed: 29122524
Sci Data. 2020 Feb 17;7(1):56
pubmed: 32066734
J Trauma. 1985 Jan;25(1):60-4
pubmed: 3965737
Neuroimage. 2011 Feb 1;54(3):2033-44
pubmed: 20851191
Neuroimage. 2006 Jul 1;31(3):1116-28
pubmed: 16545965
Neurosurgery. 2005 Dec;57(6):1173-82; discussion 1173-82
pubmed: 16331165
Comput Methods Programs Biomed. 2019 Jul;176:1-8
pubmed: 31200897
Acta Neurochir (Wien). 2015 Oct;157(10):1683-96
pubmed: 26269030

Auteurs

Clément Brossard (C)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Jules Grèze (J)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Jules-Arnaud de Busschère (JA)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Arnaud Attyé (A)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Marion Richard (M)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Florian Dhaussy Tornior (FD)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Clément Acquitter (C)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Jean-François Payen (JF)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Emmanuel L Barbier (EL)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Pierre Bouzat (P)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.

Benjamin Lemasson (B)

Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France. benjamin.lemasson@univ-grenoble-alpes.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH