Measurement of Ice-Binding Protein Inhibition of Non-ice Crystal Growth.

AFP Antifreeze proteins GH Gas hydrate IBP Ice-binding proteins Non-ice crystal growth THF hydrate Tetrahydrofuran hydrate Unidirectional growth apparatus

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 10 11 2023
pubmed: 9 11 2023
entrez: 9 11 2023
Statut: ppublish

Résumé

The kinetic hydrate inhibitor (KHI) was developed to prevent the formation of undesirable gas hydrate crystals in natural gas pipelines. Studies of antifreeze proteins (AFPs) are gaining attention in the natural gas research field due to their performance in crystal growth inhibition, excellent biodegradation, and low toxicity. Studies of AFPs may provide clues for developing future commercial KHIs used offshore. This chapter presents a simple method of evaluating AFP inhibitory performance as a KHI on tetrahydrofuran (THF) hydrate growth with a unidirectional growth apparatus.

Identifiants

pubmed: 37943457
doi: 10.1007/978-1-0716-3503-2_11
doi:

Substances chimiques

Carrier Proteins 0
Ice 0
Natural Gas 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

155-167

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74(6):2589–2593
doi: 10.1073/pnas.74.6.2589 pubmed: 267952 pmcid: 432219
Knight CA (2000) Adding to the antifreeze agenda. Nature 406(6793):249–251
doi: 10.1038/35018671 pubmed: 10917514
Furukawa Y, Inohara N, Yokoyama E (2005) Growth patterns and interfacial kinetic supercooling at ice/water interfaces at which anti-freeze glycoprotein molecules are adsorbed. J Cryst Growth 275(1-2):167–174
doi: 10.1016/j.jcrysgro.2004.10.085
Nagashima K, Furukawa Y (1997) Nonequilibrium effect of anisotropic interface kinetics on the directional growth of ice crystals. J Cryst Growth 171(3-4):577–585
doi: 10.1016/S0022-0248(96)00664-1
Zepeda S, Uda Y, Furukawa Y (2008) Directly probing the antifreeze protein kinetics at the ice/solution interface (< special issue> crystal growth controlled by macromolecules). J Jpn Assoc Cryst Growth 35(3):151–160
Antson AA, Smith DJ, Roper DI, Lewis S, Caves LS, Verma CS, Buckley SL, Lillford PJ, Hubbard RE (2001) Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 305(4):875–889
doi: 10.1006/jmbi.2000.4336 pubmed: 11162099
Sloan ED Jr, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press, Boca Raton
Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26(8):851–855
doi: 10.1021/ie50296a010
Kelland MA (2006) History of the development of low dosage hydrate inhibitors. Energy Fuel 20(3):825–847
doi: 10.1021/ef050427x
Kelland MA (2018) A review of kinetic hydrate inhibitors from an environmental perspective. Energy Fuel 32(12):12001–12012
doi: 10.1021/acs.energyfuels.8b03363
Norwegian Oil and Gas Association (2019) Recommended guidelines for emission and discharge reporting. The Norwegian Oil and Gas Association, Stavanger
Kelland MA (2014) Production chemicals for the oil and gas industry, 2nd edn. CRC Press, Boca Raton. https://doi.org/10.1201/b16648
doi: 10.1201/b16648
Organization for Economic Co-operation and Development (OECD) (2002) OECD guideline for testing of chemicals: biodegradability in seawater. Paris, OECD, p 27
Gough SR, Davidson DW (1971) Composition of tetrahydrofuran hydrate and the effect of pressure on the decomposition. Can J Chem 49(16):2691–2699
doi: 10.1139/v71-447
Zeng H, Wilson LD, Walker VK, Ripmeester JA (2006) Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation. J Am Chem Soc 128(9):2844–2850
doi: 10.1021/ja0548182 pubmed: 16506762
Zeng H, Moudrakovski IL, Ripmeester JA, Walker VK (2006) Effect of antifreeze protein on nucleation, growth and memory of gas hydrates. AICHE J 52(9):3304–3309
doi: 10.1002/aic.10929
Daraboina N, Ripmeester J, Walker VK, Englezos P (2011) Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 1. High pressure calorimetry. Energy Fuel 25(10):4392–4397
doi: 10.1021/ef200812m
Nada H, Furukawa Y (2012) Antifreeze proteins: computer simulation studies on the mechanism of ice growth inhibition. Polym J 44(7):690–698
doi: 10.1038/pj.2012.13
Yagasaki T, Matsumoto M, Tanaka H (2018) Molecular dynamics study of kinetic hydrate inhibitors: the optimal inhibitor size and effect of guest species. J Phys Chem C 123(3):1806–1816
doi: 10.1021/acs.jpcc.8b09834
Muraoka M, Kelland MA, Yamamoto Y, Tenma N (2020) Tetrahydrofuran hydrate crystal growth inhibitor performance and mechanism of quaternary ammonium and phosphonium salts. Cryst Growth Des 20(8):5000–5005
doi: 10.1021/acs.cgd.0c00126
Muraoka M, Kelland MA, Yamamoto Y, Suzuki K (2021) Critical growth rate of hydrate crystal growth inhibitors in the low growth rate region. Cryst Growth Des 21(9):4979–4985
doi: 10.1021/acs.cgd.1c00421
Anderson R, Mozaffar H, Tohidi B (2011) Development of a crystal growth inhibition based method for the evaluation of kinetic hydrate inhibitors. In Proceedings of the 7th International Conference on Gas Hydrates (pp. 17–21). Edinburgh: Domestic Organizing Committee ICGH-7
Ke W, Kelland MA (2016) Kinetic hydrate inhibitor studies for gas hydrate systems: a review of experimental equipment and test methods. Energy Fuel 30(12):10015–10028
doi: 10.1021/acs.energyfuels.6b02739
Lederhos JP, Long JP, Sum A, Christiansen RL, Sloan ED Jr (1996) Effective kinetic inhibitors for natural gas hydrates. Chem Eng Sci 51(8):1221–1229
doi: 10.1016/0009-2509(95)00370-3
Chua PC, Kelland MA (2012) Tetra(iso-hexyl)ammonium bromide—the most powerful quaternary ammonium-based tetrahydrofuran crystal growth inhibitor and synergist with polyvinylcaprolactam kinetic gas hydrate inhibitor. Energy Fuel 26(2):1160–1168
doi: 10.1021/ef201849t
Muraoka M, Susuki N, Yamamoto Y (2016) Evaluation of the performance of kinetic inhibitors for clathrate hydrate using unidirectional growth apparatus. RSC Adv 6(68):63880–63885
doi: 10.1039/C6RA06122B
Muraoka M, Ohtake M, Yamamoto Y (2019) Kinetic inhibition effect of Type I and III antifreeze proteins on unidirectional tetrahydrofuran hydrate crystal growth. RSC Adv 9(20):11530–11537
doi: 10.1039/C9RA00627C pubmed: 35520232 pmcid: 9063353

Auteurs

Michihiro Muraoka (M)

Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan. m-muraoka@aist.go.jp.

Articles similaires

Animals Humans Sarcomeres Muscle Proteins Carrier Proteins
Humans DNA Methylation Female Male Alcohol Oxidoreductases
Animals Morphogenesis Mice Mice, Knockout Heart

Classifications MeSH