Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system.
3D bone marrow (niche-like) Disease model
3D multicellular bioprinting
Acute Myeloid Leukemia
Ultrashort self-assembling peptide scaffolds
Whole transcriptome analysis
Journal
Biomaterials research
ISSN: 1226-4601
Titre abrégé: Biomater Res
Pays: England
ID NLM: 101650636
Informations de publication
Date de publication:
06 Nov 2023
06 Nov 2023
Historique:
received:
28
08
2023
accepted:
29
10
2023
medline:
7
11
2023
pubmed:
7
11
2023
entrez:
7
11
2023
Statut:
epublish
Résumé
Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.
Sections du résumé
BACKGROUND
BACKGROUND
Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies.
METHODS
METHODS
To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells.
RESULTS
RESULTS
The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse.
CONCLUSIONS
CONCLUSIONS
Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.
Identifiants
pubmed: 37932837
doi: 10.1186/s40824-023-00457-9
pii: 10.1186/s40824-023-00457-9
pmc: PMC10626721
doi:
Types de publication
Journal Article
Langues
eng
Pagination
111Subventions
Organisme : KAUST-smart health initiative
ID : REI/1/4938
Organisme : KAUST-KAU initiative, King Abdulaziz University
ID : joint project number: JP-19-003
Informations de copyright
© 2023. The Author(s).
Références
J Mater Chem B. 2017 Jan 7;5(1):62-73
pubmed: 32263435
Stem Cells Transl Med. 2014 Apr;3(4):520-9
pubmed: 24493855
J Cell Biochem. 2014 Jun;115(6):1128-37
pubmed: 24851270
Cytotherapy. 2010 Sep;12(5):615-25
pubmed: 20230221
Endocrinology. 2001 Sep;142(9):4026-39
pubmed: 11517182
Blood. 2022 May 19;139(20):3040-3057
pubmed: 34958665
Front Immunol. 2023 Apr 20;14:1141208
pubmed: 37153603
J Cell Biochem. 2004 Dec 15;93(6):1210-30
pubmed: 15486964
ACS Appl Mater Interfaces. 2021 Jun 30;13(25):29281-29292
pubmed: 34142544
Front Cell Dev Biol. 2023 Apr 25;11:1149912
pubmed: 37181754
Blood. 2012 May 24;119(21):4971-80
pubmed: 22490334
J R Soc Interface. 2018 Apr;15(141):
pubmed: 29695605
Biomaterials. 2012 Feb;33(6):1736-47
pubmed: 22136713
Biomacromolecules. 2020 Jun 8;21(6):1968-1994
pubmed: 32227919
Front Immunol. 2021 May 03;12:639572
pubmed: 34012434
Elife. 2019 Feb 05;8:
pubmed: 30720426
Cell Stem Cell. 2015 Mar 5;16(3):254-67
pubmed: 25748932
Mol Metab. 2020 Sep;39:100992
pubmed: 32325263
Biomater Res. 2023 Sep 15;27(1):86
pubmed: 37715230
Blood. 2005 Oct 15;106(8):2730-6
pubmed: 16002430
Nat Med. 2018 Dec;24(12):1859-1866
pubmed: 30420752
Biofabrication. 2022 May 17;14(3):
pubmed: 35472717
Leukemia. 2007 Jul;21(7):1423-30
pubmed: 17476279
Blood. 2017 Mar 23;129(12):1577-1585
pubmed: 28159741
Int J Hematol. 2008 Mar;87(2):152-166
pubmed: 18288567
Sci Rep. 2017 Jul 4;7(1):4625
pubmed: 28676663
Biochim Biophys Acta. 2016 Mar;1863(3):414-426
pubmed: 26255027
Int J Cancer. 2015 Aug 1;137(3):525-36
pubmed: 25545165
Leuk Res. 2017 Feb;53:65-73
pubmed: 28038356
Leukemia. 2008 Jul;22(7):1395-401
pubmed: 18509353
Regen Med. 2019 Sep 1;14(9):841-865
pubmed: 30702025
Nano Lett. 2021 Apr 14;21(7):2719-2729
pubmed: 33492960
Trends Cell Biol. 2015 Apr;25(4):198-213
pubmed: 25540894
Tissue Eng Part C Methods. 2017 Feb;23(2):72-85
pubmed: 28007011
J Clin Invest. 2005 Oct;115(10):2625-32
pubmed: 16200195
Cancers (Basel). 2021 Nov 18;13(22):
pubmed: 34830951
Sci Rep. 2020 Mar 26;10(1):5486
pubmed: 32218491
Biomed Mater. 2015 Dec 23;11(1):014103
pubmed: 26694103
Front Cell Dev Biol. 2020 Jul 08;8:561
pubmed: 32733882
Adv Cancer Res. 2008;99:335-62
pubmed: 18037409
Leukemia. 2014 Oct;28(10):1978-1987
pubmed: 24637335
Oncol Lett. 2017 Dec;14(6):6999-7010
pubmed: 29344128
Biomed Mater. 2020 Apr 28;15(3):035016
pubmed: 32045893
Hum Immunol. 2014 Feb;75(2):113-8
pubmed: 24269703
Biomaterials. 2010 Mar;31(8):2243-51
pubmed: 20015543
Cancer Lett. 2012 May 28;318(2):173-9
pubmed: 22198207
Leukemia. 2007 Feb;21(2):304-10
pubmed: 17170725
Br J Cancer. 2017 Nov 7;117(10):1551-1556
pubmed: 28898234
Cells. 2020 Feb 12;9(2):
pubmed: 32059478
Blood. 2006 Feb 1;107(3):1166-73
pubmed: 16234360
Inflamm Regen. 2018 Sep 10;38:25
pubmed: 30214642
Blood Rev. 2021 Jul;48:100787
pubmed: 33317863
Int J Nanomedicine. 2015 May 15;10:3603-22
pubmed: 26028971
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1361-6
pubmed: 21205900
Front Oncol. 2022 Jul 15;12:918959
pubmed: 35912241
Exp Hematol. 2009 Dec;37(12):1423-34
pubmed: 19819294
Biomed Res Int. 2018 Jan 3;2018:9192104
pubmed: 29516013
ACS Nano. 2023 Aug 8;17(15):14508-14531
pubmed: 37477873
Nat Rev Mol Cell Biol. 2014 Dec;15(12):786-801
pubmed: 25415508
Adv Healthc Mater. 2021 Apr;10(7):e2001689
pubmed: 33433956
Nat Rev Cancer. 2016 Jan;16(1):56-66
pubmed: 26694936
J Vis Exp. 2014 Mar 08;(85):
pubmed: 24637629
Front Immunol. 2018 Jan 31;9:89
pubmed: 29445375
J Natl Cancer Inst. 1991 May 15;83(10):663-5
pubmed: 2023265
Cancer Lett. 2008 Sep 28;269(1):67-77
pubmed: 18571836
J Cancer. 2020 Feb 10;11(9):2496-2508
pubmed: 32201520
Blood. 1988 Jul;72(1):159-64
pubmed: 3291977
Cell. 2019 Mar 7;176(6):1265-1281.e24
pubmed: 30827681
Biomater Res. 2023 Apr 21;27(1):33
pubmed: 37085887
Tissue Eng Part B Rev. 2014 Oct;20(5):365-80
pubmed: 24168395
Leuk Res. 2018 Sep;72:105-112
pubmed: 30130689
Protein Sci. 2002 Apr;11(4):980-5
pubmed: 11910041
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9190-5
pubmed: 12091708
Transfus Med Hemother. 2008 Jun;35(3):216-27
pubmed: 21547119
Nat Med. 2012 Jul;18(7):1118-22
pubmed: 22683780
J Biomed Sci. 2018 Apr 23;25(1):37
pubmed: 29685144
J Cell Physiol. 2014 Feb;229(2):139-47
pubmed: 23893766
Sci Adv. 2017 Jan 06;3(1):e1600455
pubmed: 28070554
Sci Rep. 2016 Sep 07;6:32670
pubmed: 27600999
Leuk Lymphoma. 2012 Jan;53(1):145-51
pubmed: 21740305
Haematologica. 2017 Jul;102(7):1215-1226
pubmed: 28360147
Cancer Res. 2003 Nov 1;63(21):7241-6
pubmed: 14612519
Mol Med. 2011;17(7-8):579-87
pubmed: 21424106
Stem Cells. 2014 Feb;32(2):327-37
pubmed: 24123709
Blood Adv. 2020 Aug 11;4(15):3795-3803
pubmed: 32780848
Int J Clin Exp Med. 2015 Dec 15;8(12):22520-4
pubmed: 26885237
Drug Discov Today. 2016 Sep;21(9):1464-1471
pubmed: 27130156
Blood Rev. 2017 Sep;31(5):277-286
pubmed: 28318761
Chem Rev. 2021 May 12;121(9):5240-5288
pubmed: 33201677
Sci Technol Adv Mater. 2010 Jun 24;11(3):035001
pubmed: 27877338
J Immunother Cancer. 2020 Nov;8(2):
pubmed: 33203664
Cancers (Basel). 2022 Aug 02;14(15):
pubmed: 35954425
Leuk Lymphoma. 2005 Jun;46(6):885-91
pubmed: 16019534
Expert Rev Hematol. 2011 Jun;4(3):271-83
pubmed: 21668393
Immunity. 1997 Sep;7(3):315-24
pubmed: 9324352
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):519-24
pubmed: 23267112
Heliyon. 2023 Feb 10;9(2):e13464
pubmed: 36865479
J Cell Sci. 2010 Dec 15;123(Pt 24):4195-200
pubmed: 21123617
Front Oncol. 2013 May 16;3:120
pubmed: 23720710
Cancer Res. 2007 Sep 15;67(18):8624-32
pubmed: 17875702
Eur J Immunol. 2014 Aug;44(8):2500-7
pubmed: 24825007
Clin Cancer Res. 2005 Nov 1;11(21):7683-91
pubmed: 16278388
Blood. 2014 May 15;123(20):3116-27
pubmed: 24700781
Int J Cancer. 1998 Oct 5;78(2):189-95
pubmed: 9754651
Curr Oncol Rep. 2020 Feb 11;22(3):27
pubmed: 32048054
Biomater Res. 2023 Jan 3;27(1):1
pubmed: 36597149
Stem Cell Res. 2015 Jan;14(1):95-104
pubmed: 25535865
ACS Biomater Sci Eng. 2018 Dec 10;4(12):4401-4411
pubmed: 33418833
Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:451-458
pubmed: 28254316
Leukemia. 2019 Mar;33(3):597-611
pubmed: 30705410
Crit Rev Oncol Hematol. 2019 May;137:57-83
pubmed: 31014516
Asian Pac J Cancer Prev. 2018 May 26;20(3):705-710
pubmed: 30909668
Nano Lett. 2015 Oct 14;15(10):6919-25
pubmed: 26214046
Nature. 2012 Jan 25;481(7382):457-62
pubmed: 22281595
Front Cell Dev Biol. 2021 Nov 19;9:764698
pubmed: 34869355
Cell Prolif. 2019 Mar;52(2):e12540
pubmed: 30397974
Cancer Med. 2019 Sep;8(12):5459-5467
pubmed: 31364309
Adv Mater. 2019 Apr;31(14):e1806590
pubmed: 30702785
Biomater Res. 2023 Aug 22;27(1):80
pubmed: 37608402
J Natl Cancer Inst. 2012 Jul 3;104(13):1005-20
pubmed: 22745469
Biochem Biophys Res Commun. 2013 Oct 11;440(1):125-31
pubmed: 24051090
Blood. 2000 Dec 15;96(13):4194-203
pubmed: 11110691
Biomater Res. 2023 Jun 22;27(1):60
pubmed: 37349810
Int Rev Cell Mol Biol. 2012;298:95-133
pubmed: 22878105
Nat Med. 2014 Aug;20(8):833-46
pubmed: 25100529
Int J Bioprint. 2018 Dec 14;5(1):173
pubmed: 32782980
Prog Mol Biol Transl Sci. 2017;148:355-420
pubmed: 28662828
J Mater Chem B. 2021 Jan 28;9(4):1069-1081
pubmed: 33406193
Am J Transl Res. 2016 Sep 15;8(9):3630-3644
pubmed: 27725846
ACS Appl Bio Mater. 2019 Apr 15;2(4):1406-1412
pubmed: 35026914