Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 11 2023
Historique:
received: 16 08 2023
accepted: 31 10 2023
medline: 6 11 2023
pubmed: 5 11 2023
entrez: 5 11 2023
Statut: epublish

Résumé

Salt stress is one unfavorable factor of global climate change that adversely affects rice plant growth and yield. To identify novel salt-tolerant genes and new varieties of salt-tolerant rice, a better understanding of the molecular regulation mechanism of salt tolerance in rice is needed. In this study we used transcriptome analyses to examine changes in gene expression of salt-tolerant and salt-sensitive rice plants. The salt-tolerant cultivar HH11 and salt-sensitive cultivar IR29 were treated with 200 mM NaCl solution for 0 h, 6 h, 24 h and 48 h at the three leaf stage. Physiological parameters and transcriptome were measured and analyzed after each treatment. Activity of SOD and POD, as well as the MDA and protein content of the two rice cultivars generally increased with increasing time of exposure to NaCl. Meanwhile, the APX activity first increased, then decreased in both cultivars, with maximum values seen at 6 h for IR29 and at 24 h for HH11. The GR and GPX activity of HH11 were stronger than that of IR29 in response to salt stress. The H

Identifiants

pubmed: 37925528
doi: 10.1038/s41598-023-46389-1
pii: 10.1038/s41598-023-46389-1
pmc: PMC10625528
doi:

Substances chimiques

Hydrogen Peroxide BBX060AN9V
Sodium Chloride 451W47IQ8X
Antioxidants 0
Superoxide Dismutase EC 1.15.1.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

19065

Informations de copyright

© 2023. The Author(s).

Références

Methods Enzymol. 1985;113:490-5
pubmed: 4088069
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
BMC Plant Biol. 2016 Jan 19;16:22
pubmed: 26786707
Front Plant Sci. 2021 Dec 21;12:796956
pubmed: 34992623
J Food Sci. 2020 Jan;85(1):14-20
pubmed: 31869858
Plant Cell Environ. 2021 Sep;44(9):2951-2965
pubmed: 34008219
Front Plant Sci. 2023 May 30;14:1191457
pubmed: 37360702
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Nutr Metab Cardiovasc Dis. 2005 Aug;15(4):316-28
pubmed: 16054557
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
Sci Rep. 2018 Feb 1;8(1):2085
pubmed: 29391416
Plant Physiol Biochem. 2021 Nov;168:167-176
pubmed: 34634642
Clin Chim Acta. 1991 Feb 15;196(2-3):143-51
pubmed: 2029780
Methods Biochem Anal. 1954;1:357-424
pubmed: 13193536
Physiol Plant. 2021 Apr;171(4):620-637
pubmed: 32940908
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Eur J Biochem. 1973 Jul 2;36(1):257-66
pubmed: 4354621
Genome Biol. 2014;15(12):550
pubmed: 25516281
Methods Enzymol. 2005;401:468-83
pubmed: 16399403
Int J Mol Sci. 2023 Mar 14;24(6):
pubmed: 36982621
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22
pubmed: 21715386
Ann Bot. 2007 Jun;99(6):1161-73
pubmed: 17428832
Int J Mol Sci. 2022 Jan 30;23(3):
pubmed: 35163547
Protoplasma. 2010 Sep;245(1-4):85-96
pubmed: 20419461
Front Plant Sci. 2021 Oct 27;12:725436
pubmed: 34777413
Front Plant Sci. 2023 Jan 24;14:1065334
pubmed: 36760644
Physiol Mol Biol Plants. 2017 Jul;23(3):529-544
pubmed: 28878492
Protoplasma. 2013 Feb;250(1):3-19
pubmed: 22194018
Antioxidants (Basel). 2019 Sep 09;8(9):
pubmed: 31505852
New Phytol. 2017 May;214(3):943-951
pubmed: 28277621
Front Plant Sci. 2013 Jul 24;4:272
pubmed: 23898339
Plant Cell Environ. 2015 Dec;38(12):2747-65
pubmed: 26046301
Front Plant Sci. 2022 Sep 07;13:952595
pubmed: 36160959
Bioinformatics. 2005 Oct 1;21(19):3787-93
pubmed: 15817693
Biochem Biophys Res Commun. 2018 Jan 1;495(1):286-291
pubmed: 29128358
Mol Plant. 2016 Dec 5;9(12):1667-1670
pubmed: 27717919
Plant Cell. 2020 Nov;32(11):3535-3558
pubmed: 32938753
Nucleic Acids Res. 2010 Jan;38(Database issue):D822-7
pubmed: 19858103
Methods Enzymol. 1985;113:484-90
pubmed: 3003504
Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7
pubmed: 24174544
BMC Genomics. 2018 Sep 27;19(1):717
pubmed: 30261913

Auteurs

Xin Fang (X)

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.

Junjie Mo (J)

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.

Hongkai Zhou (H)

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.

Xuefeng Shen (X)

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.

Yuling Xie (Y)

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.

Jianghuan Xu (J)

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.

Shan Yang (S)

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China. shangu3166@163.com.
South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China. shangu3166@163.com.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH