Generating a multimodal artificial intelligence model to differentiate benign and malignant follicular neoplasms of the thyroid: A proof-of-concept study.
Journal
Surgery
ISSN: 1532-7361
Titre abrégé: Surgery
Pays: United States
ID NLM: 0417347
Informations de publication
Date de publication:
Jan 2024
Jan 2024
Historique:
received:
06
02
2023
revised:
08
05
2023
accepted:
18
06
2023
pubmed:
5
11
2023
medline:
5
11
2023
entrez:
4
11
2023
Statut:
ppublish
Résumé
Machine learning has been increasingly used to develop algorithms that can improve medical diagnostics and prognostication and has shown promise in improving the classification of thyroid ultrasound images. This proof-of-concept study aims to develop a multimodal machine-learning model to classify follicular carcinoma from adenoma. This is a retrospective study of patients with follicular adenoma or carcinoma at a single institution between 2010 and 2022. Demographics, imaging, and perioperative variables were collected. The region of interest was annotated on ultrasound and used to perform radiomics analysis. Imaging features and clinical variables were then used to create a random forest classifier to predict malignancy. Leave-one-out cross-validation was conducted to evaluate classifier performance using the area under the receiver operating characteristic curve. Patients with follicular adenomas (n = 7) and carcinomas (n = 11) with complete imaging and perioperative data were included. A total of 910 features were extracted from each image. The t-distributed stochastic neighbor embedding method reduced the dimension to 2 primary represented components. The random forest classifier achieved an area under the receiver operating characteristic curve of 0.76 (clinical only), 0.29 (image only), and 0.79 (multimodal data). Our multimodal machine learning model demonstrates promising results in classifying follicular carcinoma from adenoma. This approach can potentially be applied in future studies to generate models for preoperative differentiation of follicular thyroid neoplasms.
Sections du résumé
BACKGROUND
BACKGROUND
Machine learning has been increasingly used to develop algorithms that can improve medical diagnostics and prognostication and has shown promise in improving the classification of thyroid ultrasound images. This proof-of-concept study aims to develop a multimodal machine-learning model to classify follicular carcinoma from adenoma.
METHODS
METHODS
This is a retrospective study of patients with follicular adenoma or carcinoma at a single institution between 2010 and 2022. Demographics, imaging, and perioperative variables were collected. The region of interest was annotated on ultrasound and used to perform radiomics analysis. Imaging features and clinical variables were then used to create a random forest classifier to predict malignancy. Leave-one-out cross-validation was conducted to evaluate classifier performance using the area under the receiver operating characteristic curve.
RESULTS
RESULTS
Patients with follicular adenomas (n = 7) and carcinomas (n = 11) with complete imaging and perioperative data were included. A total of 910 features were extracted from each image. The t-distributed stochastic neighbor embedding method reduced the dimension to 2 primary represented components. The random forest classifier achieved an area under the receiver operating characteristic curve of 0.76 (clinical only), 0.29 (image only), and 0.79 (multimodal data).
CONCLUSION
CONCLUSIONS
Our multimodal machine learning model demonstrates promising results in classifying follicular carcinoma from adenoma. This approach can potentially be applied in future studies to generate models for preoperative differentiation of follicular thyroid neoplasms.
Identifiants
pubmed: 37925261
pii: S0039-6060(23)00635-9
doi: 10.1016/j.surg.2023.06.053
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
121-127Informations de copyright
Copyright © 2023 Elsevier Inc. All rights reserved.