Plasma pTau-217 and N-terminal tau (NTA) enhance sensitivity to identify tau PET positivity in amyloid-β positive individuals.
blood biomarker
tau accumulation
tau prediction
tau staging
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
03 Nov 2023
03 Nov 2023
Historique:
revised:
31
08
2023
received:
03
07
2023
accepted:
31
08
2023
medline:
3
11
2023
pubmed:
3
11
2023
entrez:
3
11
2023
Statut:
aheadofprint
Résumé
We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aβ) positive participants using plasma biomarkers. In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [ Highest associations with tau positivity in Aβ+ individuals were found for plasma pTau-217 (AUC [CI The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aβ+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : CIHR
ID : MOP-11-51-31
Pays : Canada
Organisme : CIHR
ID : 152985
Pays : Canada
Organisme : Alzheimer's Association
ID : NIRG-12- 92090
Pays : United States
Organisme : Alzheimer's Association
ID : NIRP-12-259245
Pays : United States
Informations de copyright
© 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Références
Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010;6:78-87. https://www.nature.com/articles/nrneurol.2009.217
Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Prim. 2021;7:33. https://www.nature.com/articles/s41572-021-00269-y
Milà-Alomà M, Ashton NJ, Shekari M, et al. Publisher correction: plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer's disease. Nat Med. 2022;28:1797-1801. https://www.nature.com/articles/s41591-022-02037-1
Moscoso A, Grothe MJ, Ashton NJ, et al. Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum. Brain. 2021;144:325-339. https://academic.oup.com/brain/article/144/1/325/6012955
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422-433. https://linkinghub.elsevier.com/retrieve/pii/S1474442220300715
Karikari TK, Ashton NJ, Brinkmalm G, et al. Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat Rev Neurol. 2022;18:400-418. https://www.nature.com/articles/s41582-022-00665-2
Janelidze S, Berron D, Smith R, et al. Associations of plasma phospho-Tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurol. 2021;78:149. https://jamanetwork.com/journals/jamaneurology/fullarticle/2772866
Therriault J, Vermeiren M, Servaes S, et al. Association of phosphorylated tau biomarkers with amyloid positron emission tomography vs tau positron emission tomography. JAMA Neurol. 2023;80:188. https://jamanetwork.com/journals/jamaneurology/fullarticle/2799180
Snellman A, Lantero-Rodriguez J, Emeršič A, et al. N-terminal and mid-region tau fragments as fluid biomarkers in neurological diseases. Brain. 2022;145:2834-2848. http://www.ncbi.nlm.nih.gov/pubmed/35311972
Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's Dement. 2018;14:535-562. https://onlinelibrary.wiley.com/doi/10.1016/j.jalz.2018.02.018
Aisen PS, Jimenez-Maggiora GA, Rafii MS, Walter S, Raman R. Early-stage Alzheimer disease: getting trial-ready. Nat Rev Neurol. 2022;18:389-399. https://www.nature.com/articles/s41582-022-00645-6
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer's disease. N Engl J Med. 2022;388:9-21. http://www.nejm.org/doi/10.1056/NEJMoa2212948
Gauthier S, Ng KP, Pascoal TA, Zhang H, Rosa-Neto P. Targeting Alzheimer's disease at the right time and the right place: validation of a personalized approach to diagnosis and treatment. Perry G, Avila J, Moreira PI, Sorensen AA, Tabaton M, eds. J Alzheimer's Dis [online serial]. 2018;64:S23-S31. https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-179924
Hampel H, Au R, Mattke S, et al. Designing the next-generation clinical care pathway for Alzheimer's disease. Nat Aging. 2022;2:692-703. https://www.nature.com/articles/s43587-022-00269-x
Hampel H, O'Bryant SE, Molinuevo JL, et al. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14:639-652. http://www.nature.com/articles/s41582-018-0079-7
Therriault J, Benedet AL, Pascoal TA, et al. Determining amyloid-β positivity using 18 F-AZD4694 PET imaging. J Nucl Med. 2021;62:247-252. http://jnm.snmjournals.org/lookup/doi/10.2967/jnumed.120.245209
Pascoal TA, Therriault J, Benedet AL, et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain. 2020;143:2818-2830. https://academic.oup.com/brain/article/143/9/2818/5872095
Pascoal TA, Shin M, Kang MS, et al. In vivo quantification of neurofibrillary tangles with [18F]MK-6240. Alzheimers Res Ther. 2018;10:74. https://alzres.biomedcentral.com/articles/10.1186/s13195-018-0402-y
Jack CR, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer's disease. Brain. 2018;141:1517-1528. https://academic.oup.com/brain/article/141/5/1517/4929907
Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46:39-46. https://linkinghub.elsevier.com/retrieve/pii/S1053811909000809
Therriault J, Pascoal TA, Benedet AL, et al. Frequency of biologically-defined AD in relation to age, sex, APOEε4 and cognitive impairment. Neurology. 2020;96(7):e975-e985. https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000011416
Therriault J, Pascoal TA, Lussier FZ, et al. Biomarker modeling of Alzheimer's disease using PET-based Braak staging. Nat Aging. 2022;2:526-535. https://www.nature.com/articles/s43587-022-00204-0
Triana-Baltzer G, Moughadam S, Slemmon R, et al. Development and validation of a high-sensitivity assay for measuring p217+tau in plasma. Alzheimers Dement (Amst). 2021;13:e12204. https://onlinelibrary.wiley.com/doi/10.1002/dad2.12204
Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77
Ebenau JL, Timmers T, Wesselman LMP, et al. ATN classification and clinical progression in subjective cognitive decline. Neurology. 2020;95:e46-e58. https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000009724
Ossenkoppele R, Pichet Binette A, Groot C, et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat Med. 2022;28:2381-2387. https://www.nature.com/articles/s41591-022-02049-x
Jack CR, Wiste HJ, Algeciras-Schimnich A, et al. Predicting amyloid PET and tau PET stages with plasma biomarkers. Brain. 2023;146:2029-2044. https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awad042/7038162
Barthélemy NR, Saef B, Li Y, et al. CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer's disease. Nat Aging. 2023;3:391-401. https://www.nature.com/articles/s43587-023-00380-7
Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer's disease. N Engl J Med. 2021;384:1691-1704. http://www.nejm.org/doi/10.1056/NEJMoa2100708
Pontecorvo MJ, Lu M, Burnham SC, et al. Association of donanemab treatment with exploratory plasma biomarkers in early symptomatic Alzheimer disease. JAMA Neurol. 2022;79:1250. https://jamanetwork.com/journals/jamaneurology/fullarticle/2797022
Aisen PS, Cummings J, Jack CR, et al. On the path to 2025: understanding the Alzheimer's disease continuum. Alzheimers Res Ther. 2017;9:60. https://alzres.biomedcentral.com/articles/10.1186/s13195-017-0283-5
Jack CR, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539-547. https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000002923
Gauthier S, Feldman HH, Schneider LS, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet. 2016;388:2873-2884. https://linkinghub.elsevier.com/retrieve/pii/S0140673616312752
Tan YY, Papez V, Chang WH, Mueller SH, Denaxas S, Lai AG. Comparing clinical trial population representativeness to real-world populations: an external validity analysis encompassing 43 895 trials and 5 685 738 individuals across 989 unique drugs and 286 conditions in England. Lancet Heal Longev. 2022;3:e674-e689. https://linkinghub.elsevier.com/retrieve/pii/S2666756822001866
Janelidze S, Bali D, Ashton NJ, et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer's disease. Brain. 2022;146:1592-1601. https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awac333/6695388
Doré V, Doecke JD, Saad ZS, et al. Plasma p217+tau versus NAV4694 amyloid and MK6240 tau PET across the Alzheimer's continuum. Alzheimers Dement (Amst). 2022;14:e12307. http://www.ncbi.nlm.nih.gov/pubmed/35415202