Dapagliflozin-Induced Myocardial Flow Reserve Improvement is not Associated with HDL Ability to Stimulate Endothelial Nitric Oxide Production.

Coronary microvascular dysfunction Dapagliflozin Diabetes Endothelium HDL Myocardial flow reserve Nitric oxide SGLT2i

Journal

Diabetes therapy : research, treatment and education of diabetes and related disorders
ISSN: 1869-6953
Titre abrégé: Diabetes Ther
Pays: United States
ID NLM: 101539025

Informations de publication

Date de publication:
26 Oct 2023
Historique:
received: 01 08 2023
accepted: 09 10 2023
medline: 26 10 2023
pubmed: 26 10 2023
entrez: 26 10 2023
Statut: aheadofprint

Résumé

Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown controversial results in modulating plasma lipids in clinical trials. Most studies found slight increases in high-density lipoprotein (HDL) cholesterol but few have provided evidence on HDL functionality with disappointing results. However, there is broad agreement that these drugs provide cardiovascular protection through several mechanisms. Our group demonstrated that dapagliflozin improves myocardial flow reserve (MFR) in patients with type 2 diabetes (T2D) with coronary artery disease (CAD). The underlying mechanisms are still unknown, although in vitro studies have suggested the involvement of nitric oxide (NO). To investigate changes in HDL-mediated modulation of NO production with dapagliflozin and whether there is an association with MFR. Sixteen patients with CAD-T2D were enrolled and randomized 1:1 to dapagliflozin or placebo for 4 weeks. Blood samples were collected before and after treatment for each group. The ability of HDL to stimulate NO production in endothelial cells was tested in vitro by incubating human umbilical vein endothelial cells (HUVEC) with apoB-depleted (apoB-D) serum of these patients. The production of NO was assessed by fluorescent assay, and results were expressed as fold versus untreated cells. Change in HDL-mediated NO production remained similar in dapagliflozin and placebo group, even after adjustment for confounders. There were no significant correlations between HDL-mediated NO production and MFR either at baseline or after treatment. No changes were found in HDL cholesterol in either group, while low-density lipoprotein cholesterol (LDL cholesterol) significantly decreased compared to baseline only in treatment group (p = 0.043). In patients with T2D-CAD, beneficial effects of dapagliflozin on coronary microcirculation seem to be unrelated to HDL functions. However, HDL capacity to stimulate NO production is not impaired at baseline; thus, the effect of drug treatments would be negligible. To conclude, we can assume that HDL-independent molecular pathways are involved in the improvement of MFR in this population. EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752.

Sections du résumé

BACKGROUND BACKGROUND
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown controversial results in modulating plasma lipids in clinical trials. Most studies found slight increases in high-density lipoprotein (HDL) cholesterol but few have provided evidence on HDL functionality with disappointing results. However, there is broad agreement that these drugs provide cardiovascular protection through several mechanisms. Our group demonstrated that dapagliflozin improves myocardial flow reserve (MFR) in patients with type 2 diabetes (T2D) with coronary artery disease (CAD). The underlying mechanisms are still unknown, although in vitro studies have suggested the involvement of nitric oxide (NO).
AIM OBJECTIVE
To investigate changes in HDL-mediated modulation of NO production with dapagliflozin and whether there is an association with MFR.
METHODS METHODS
Sixteen patients with CAD-T2D were enrolled and randomized 1:1 to dapagliflozin or placebo for 4 weeks. Blood samples were collected before and after treatment for each group. The ability of HDL to stimulate NO production in endothelial cells was tested in vitro by incubating human umbilical vein endothelial cells (HUVEC) with apoB-depleted (apoB-D) serum of these patients. The production of NO was assessed by fluorescent assay, and results were expressed as fold versus untreated cells.
RESULTS RESULTS
Change in HDL-mediated NO production remained similar in dapagliflozin and placebo group, even after adjustment for confounders. There were no significant correlations between HDL-mediated NO production and MFR either at baseline or after treatment. No changes were found in HDL cholesterol in either group, while low-density lipoprotein cholesterol (LDL cholesterol) significantly decreased compared to baseline only in treatment group (p = 0.043).
CONCLUSIONS CONCLUSIONS
In patients with T2D-CAD, beneficial effects of dapagliflozin on coronary microcirculation seem to be unrelated to HDL functions. However, HDL capacity to stimulate NO production is not impaired at baseline; thus, the effect of drug treatments would be negligible. To conclude, we can assume that HDL-independent molecular pathways are involved in the improvement of MFR in this population.
TRIAL REGISTRATION BACKGROUND
EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752.

Identifiants

pubmed: 37883003
doi: 10.1007/s13300-023-01491-5
pii: 10.1007/s13300-023-01491-5
doi:

Banques de données

ClinicalTrials.gov
['NCT03313752']

Types de publication

Journal Article

Langues

eng

Informations de copyright

© 2023. The Author(s).

Références

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720 . (Epub 2015 Sep 17).
doi: 10.1056/NEJMoa1504720 pubmed: 26378978
McMurray JJV, Solomon SD, Inzucchi SE, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303 . (Epub 2019 Sep 19).
doi: 10.1056/NEJMoa1911303 pubmed: 31535829
Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387(12):1089–98. https://doi.org/10.1056/NEJMoa2206286 . (Epub 2022 Aug 27).
doi: 10.1056/NEJMoa2206286 pubmed: 36027570
Giaccari A. Sodium-glucose co-transporter inhibitors: medications that mimic fasting for cardiovascular prevention. Diabetes Obes Metab. 2019;21(10):2211–8. https://doi.org/10.1111/dom.13814 . (Epub 2019 Jul 5).
doi: 10.1111/dom.13814 pubmed: 31209982
Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17. https://doi.org/10.1007/s00125-018-4670-7 . (Epub 2018 Aug 22).
doi: 10.1007/s00125-018-4670-7 pubmed: 30132036
Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “Thrifty Substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14. https://doi.org/10.2337/dc16-0330 .
doi: 10.2337/dc16-0330 pubmed: 27289126
Natali A, Nesti L, Tricò D, Ferrannini E. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol. 2021;20(1):196. https://doi.org/10.1186/s12933-021-01385-5 .
doi: 10.1186/s12933-021-01385-5 pubmed: 34583699 pmcid: 8479881
Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A diferential volume regulation hypothesis. Diabetes Obes Metab. 2018;20:479–87.
doi: 10.1111/dom.13126 pubmed: 29024278
Leccisotti L, Cinti F, Sorice GP, et al. Dapagliflozin improves myocardial flow reserve in patients with type 2 diabetes: the DAPAHEART Trial: a preliminary report. Cardiovasc Diabetol. 2022;21(1):173. https://doi.org/10.1186/s12933-022-01607-4 .
doi: 10.1186/s12933-022-01607-4 pubmed: 36057768 pmcid: 9440459
Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med. 2005;46(1):75–88 (Erratum in: J Nucl Med. 2005 Feb;46(2):291).
pubmed: 15632037
Juni RP, Kuster DWD, Goebel M, et al. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empaglifozin. JACC Basic Transl Sci. 2019;4:575–9.
doi: 10.1016/j.jacbts.2019.04.003 pubmed: 31768475 pmcid: 6872802
Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, Remaley AT, Rothblat GH, Tall AR, Yvan-Charvet L. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19. https://doi.org/10.1161/CIRCULATIONAHA.111.066589 .
doi: 10.1161/CIRCULATIONAHA.111.066589 pubmed: 22508840 pmcid: 4159082
Calabresi L, Gomaraschi M, Franceschini G. Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler Thromb Vasc Biol. 2003;23(10):1724–31. https://doi.org/10.1161/01.ATV.0000094961.74697.54 . (Epub 2003 Sep 11).
doi: 10.1161/01.ATV.0000094961.74697.54 pubmed: 12969988
Ossoli A, Pavanello C, Giorgio E, Calabresi L, Gomaraschi M. Dysfunctional HDL as a therapeutic target for atherosclerosis prevention. Curr Med Chem. 2019;26(9):1610–30. https://doi.org/10.2174/0929867325666180316115726 .
doi: 10.2174/0929867325666180316115726 pubmed: 29546829
Ossoli A, Simonelli S, Varrenti M, et al. Recombinant LCAT (lecithin: cholesterol acyltransferase) rescues defective HDL (high-density lipoprotein)-mediated endothelial protection in acute coronary syndrome. Arterioscler Thromb Vasc Biol. 2019;39(5):915–24. https://doi.org/10.1161/ATVBAHA.118.311987 .
doi: 10.1161/ATVBAHA.118.311987 pubmed: 30894011
Uthman L, Homayr A, Juni RP, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53(5):865–86. https://doi.org/10.33594/000000178 .
doi: 10.33594/000000178 pubmed: 31724838
Osto E, Bonacina F, Pirillo A, Norata GD. Neutral effect of SGLT2 inhibitors on lipoprotein metabolism: from clinical evidence to molecular mechanisms. Pharmacol Res. 2023;188: 106667. https://doi.org/10.1016/j.phrs.2023.106667 . (Epub 2023 Jan 16).
doi: 10.1016/j.phrs.2023.106667 pubmed: 36657502
Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783–94. https://doi.org/10.1111/dom.12670 . (Epub 2016 May 13).
doi: 10.1111/dom.12670 pubmed: 27059700
Sánchez-García A, Simental-Mendía M, Millán-Alanís JM, Simental-Mendía LE. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: a systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol Res. 2020;160: 105068. https://doi.org/10.1016/j.phrs.2020.105068 . (Epub 2020 Jul 8).
doi: 10.1016/j.phrs.2020.105068 pubmed: 32652200
Calabresi L, Gomaraschi M, Franceschini G. High-density lipoprotein quantity or quality for cardiovascular prevention? Curr Pharm Des. 2010;16(13):1494–503.
doi: 10.2174/138161210791050960 pubmed: 20196739
Fadini GP, Bonora BM, Zatti G, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol. 2017;16(1):42. https://doi.org/10.1186/s12933-017-0529-3 .
doi: 10.1186/s12933-017-0529-3 pubmed: 28376855 pmcid: 5379610
Sorice GP, Cinti F, Leccisotti L, et al. Effect of dapagliflozin on myocardial insulin sensitivity and perfusion: rationale and design of the DAPAHEART trial. Diabetes Ther. 2021;12(7):2101–13. https://doi.org/10.1007/s13300-021-01083-1 . (Epub 2021 May 26).
doi: 10.1007/s13300-021-01083-1 pubmed: 34037951 pmcid: 8266960
Arnaboldi L, Ossoli A, Giorgio E, et al. LIPA gene mutations affect the composition of lipoproteins: enrichment in ACAT-derived cholesteryl esters. Atherosclerosis. 2020;297:8–15. https://doi.org/10.1016/j.atherosclerosis.2020.01.026 . (Epub 2020 Jan 31).
doi: 10.1016/j.atherosclerosis.2020.01.026 pubmed: 32058863
Sciagrà R, Lubberink M, Hyafl F, et al. EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2020;23:7.
Sorrentino SA, Besler C, Rohrer L, Meyer M, Heinrich K, Bahlmann FH, Mueller M, Horváth T, Doerries C, Heinemann M, Flemmer S, Markowski A, Manes C, Bahr MJ, Haller H, von Eckardstein A, Drexler H, Landmesser U. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation. 2010;121(1):110–22. https://doi.org/10.1161/CIRCULATIONAHA.108.836346 . (Epub 2009 Dec 21).
doi: 10.1161/CIRCULATIONAHA.108.836346 pubmed: 20026785
Perségol L, Vergès B, Foissac M, Gambert P, Duvillard L. Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia. 2006;49(6):1380–6. https://doi.org/10.1007/s00125-006-0244-1 . (Epub 2006 Apr 5).
doi: 10.1007/s00125-006-0244-1 pubmed: 16596357
Reriani MK, Dunlay SM, Gupta B, West CP, Rihal CS, Lerman LO, Lerman A. Effects of statins on coronary and peripheral endothelial function in humans: a systematic review and meta-analysis of randomized controlled trials. Eur J Cardiovasc Prev Rehabil. 2011;18(5):704–16. https://doi.org/10.1177/1741826711398430 . (Epub 2011 Mar 4).
doi: 10.1177/1741826711398430 pubmed: 21450596
Denimal D, Benanaya S, Monier S, et al. Normal HDL cholesterol efflux and anti-inflammatory capacities in type 2 diabetes despite lipidomic abnormalities. J Clin Endocrinol Metab. 2022;107(9):e3816–23. https://doi.org/10.1210/clinem/dgac339 .
doi: 10.1210/clinem/dgac339 pubmed: 35647758 pmcid: 9387699
Wen Y, Skidmore JC, Porter-Turner MM, Rea CA, Khokher MA, Singh BM. Relationship of glycation, antioxidant status and oxidative stress to vascular endothelial damage in diabetes. Diabetes Obes Metab. 2002;4(5):305–8.
doi: 10.1046/j.1463-1326.2002.00212.x pubmed: 12190993
Salvatore T, Galiero R, Caturano A, et al. Coronary microvascular dysfunction in diabetes mellitus: pathogenetic mechanisms and potential therapeutic options. Biomedicines. 2022;10(9):2274. https://doi.org/10.3390/biomedicines10092274 .
doi: 10.3390/biomedicines10092274 pubmed: 36140374 pmcid: 9496134
Niewiara Ł, Kleczyński P, Guzik B, et al. Impaired coronary flow reserve in patients with poor type 2 diabetes control: Preliminary results from prospective microvascular dysfunction registry. Cardiol J. 2022. https://doi.org/10.5603/CJ.a2022.0100 . (Epub ahead of print).
doi: 10.5603/CJ.a2022.0100 pubmed: 36342032
Zhaohu H, Xiao H, Hailin S, Feng H. Efficacy and safety of dapagliflozin versus liraglutide in patients with overweight or obesity and type 2 diabetes mellitus: a randomised controlled clinical trial in Tianjin, China. J Diabetes Res. 2022;13(2022):4126995. https://doi.org/10.1155/2022/4126995 .
doi: 10.1155/2022/4126995
Inagaki N, Goda M, Yokota S, Maruyama N, Iijima H. Effects of baseline blood pressure and low-density lipoprotein cholesterol on safety and efficacy of canagliflozin in japanese patients with type 2 diabetes mellitus. Adv Ther. 2015;32(11):1085–103.
doi: 10.1007/s12325-015-0255-8 pubmed: 26530268 pmcid: 4662712
Bouter KEC, van Bommel EJM, Jansen DH, et al. The effect of dapagliflozin on apolipoprotein B and glucose fluxes in patients with type 2 diabetes and well-controlled plasma LDL cholesterol. Diabetes Obes Metab. 2020;22(6):988–96.
doi: 10.1111/dom.13990 pubmed: 32026592 pmcid: 7318266
Briand F, Mayoux E, Brousseau E, et al. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes. 2016;65(7):2032–8.
doi: 10.2337/db16-0049 pubmed: 27207551

Auteurs

Umberto Capece (U)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Chiara Pavanello (C)

Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.

Francesca Cinti (F)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Lucia Leccisotti (L)

Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Teresa Mezza (T)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Gea Ciccarelli (G)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Simona Moffa (S)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Gianfranco Di Giuseppe (G)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Laura Soldovieri (L)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Michela Brunetti (M)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Alessandro Giordano (A)

Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.

Andrea Giaccari (A)

Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy. andrea.giaccari@unicatt.it.

Laura Calabresi (L)

Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.

Alice Ossoli (A)

Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.

Classifications MeSH