Antitumor activity of the new tyrphostin briva against BRAF
Anticancer Drugs
BRAF-mutant tumors
Bromophenyl derivative
Colorectal cancer
Isovanillin
VEGFR2 inhibitors
Journal
Investigational new drugs
ISSN: 1573-0646
Titre abrégé: Invest New Drugs
Pays: United States
ID NLM: 8309330
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
25
08
2023
accepted:
12
10
2023
medline:
22
11
2023
pubmed:
23
10
2023
entrez:
23
10
2023
Statut:
ppublish
Résumé
Because of a reduced sensitivity of BRAF-mutant colorectal cancers to BRAF inhibitor treatment when compared with BRAF-mutant melanoma, it is essential to develop efficient drugs to cope with this disease. The new 2-(4-bromophenyl)-3-arylacrylonitrile compound Briva was prepared in one step from commercially available starting compounds. Briva and two known thiophene analogs (Thio-Iva and Thio-Dam) were tested for their cytotoxic activity against various tumor cell lines including colorectal and breast cancer cells. The antitumor activities of the test compounds were assessed in vitro via the MTT assay, DAPI staining of nuclei, RT-PCR and immunoblotting, wound healing, clonogenic assay, collagen I adhesion assay, and kinase inhibition assays. A selective activity of Briva was observed against BRAF
Identifiants
pubmed: 37870738
doi: 10.1007/s10637-023-01402-2
pii: 10.1007/s10637-023-01402-2
doi:
Substances chimiques
Proto-Oncogene Proteins B-raf
EC 2.7.11.1
Tyrphostins
0
Antineoplastic Agents
0
BRAF protein, human
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
791-801Subventions
Organisme : The Hashemite University
ID : AM/16/13/10/2202791
Organisme : Bayern Innovativ
ID : 2014-2668-SI-01/1
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Pearson G, Robinson F, Gibson TB et al (2001) Mitogen-activated protein (MAP) kinase pathways. Endocr Rev 22:153–183. https://doi.org/10.1210/edrv.22.2.0428
doi: 10.1210/edrv.22.2.0428
Rushworth LK, Hindley AD, O’Neill E, Kolch W (2006) Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26:2262–2272. https://doi.org/10.1128/MCB.26.6.2262-2272.2006
doi: 10.1128/MCB.26.6.2262-2272.2006
Halle BR, Johnson DB (2021) Defining and targeting BRAF mutations in solid tumors. Curr Treat Options Oncol 22:30. https://doi.org/10.1007/s11864-021-00827-2
doi: 10.1007/s11864-021-00827-2
Zhong J, Yan W, Wang C et al (2022) BRAF inhibitor resistance in Melanoma: mechanisms and alternative therapeutic strategies. Curr Treat Options Oncol 23:1503–1521. https://doi.org/10.1007/s11864-022-01006-7
doi: 10.1007/s11864-022-01006-7
Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16:103–109. https://doi.org/10.1517/1472822.2011.645805
doi: 10.1517/1472822.2011.645805
Flaherty KT (2011) BRAF inhibitors and Melanoma. Cancer J 17:505–511. https://doi.org/10.1097/PPO.0b013e31823e5357
doi: 10.1097/PPO.0b013e31823e5357
Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in Melanoma with BRAF V600E mutations. N Engl J Med 367:1694–1703. https://doi.org/10.1056/NEJMoa1210093
doi: 10.1056/NEJMoa1210093
Cho SM, Esmail A, Abdelrahim M (2021) Triple-regimen of verumafenib, irinotecan, and cetuximab for the treatment of BRAF
doi: 10.3389/fphar.2021.795381
Eriksen M, Pfeiffer P, Rohrberg KS et al (2022) A phase II study of daily encorafenib in combination with biweekly cetuximab in patients with BRAF V600E mutated metastatic Colorectal cancer: the NEW BEACON study. BMC Cancer 22:1321. https://doi.org/10.1186/s12885-022-10420-x
doi: 10.1186/s12885-022-10420-x
Grothey A, Fakih M, Tabernero J (2021) Management of BRAF-mutant metastatic Colorectal cancer: a review of treatment options and evidence-based guidelines. Ann Oncol 32:959–967. https://doi.org/10.1016/j.annonc.2021.03.206
doi: 10.1016/j.annonc.2021.03.206
Arafa MA, Farhat K (2015) Colorectal cancer in the arab world – screening practices and future prospects. Asian Pac J Cancer Prev 16:7425–7430. https://doi.org/10.7314/apjcp.2015.16.17.7425
doi: 10.7314/apjcp.2015.16.17.7425
Miele E, Abballe L, Spinelli GP et al (2020) BRAF mutant Colorectal cancer: ErbB2 expression levels as predictive factor for the response to combined BRAF/ErbB inhibitors. BMC Cancer 20:129. https://doi.org/10.1186/s12885-020-6586-0
doi: 10.1186/s12885-020-6586-0
Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA (2010) BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal 3:ra84–ra84. https://doi.org/10.1126/scisignal.2001148
doi: 10.1126/scisignal.2001148
Reddy KB, Mangold GL, Tandon AK et al (1991) Inhibition of Breast cancer cell growth in vitro by a tyrosine kinase inhibitor. Cancer Res 52:3636–3641
Yoneda T, Lyall RM, Alsina MM et al (1991) The antiproliverative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res 51:4430–4435
Wells G, Seaton A, Stevens MF (2000) Structural studies on bioactive compounds. 32. Oxidation of tyrphostin protein tyrosine kinase inhibitors with hypervalent iodine reagents. J Med Chem 43:1550–1562. https://doi.org/10.1021/jm990947f
doi: 10.1021/jm990947f
Biersack B, Zoldakova M, Effenberger K, Schobert R (2010) (Arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrphostins with enhanced selectivity and cytotoxicity in cancer cells. Eur J Med Chem 45:1972–1975. https://doi.org/10.1016/j.ejmech.2010.01.040
doi: 10.1016/j.ejmech.2010.01.040
Tcherniuk S, Skoufias DA, Labriere C et al (2010) Relocation of aurora B and surviving from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed 49:8228–8231. https://doi.org/10.1002/anie.201003254
doi: 10.1002/anie.201003254
Tarleton M, Gilbert J, Sakoff JA, McCluskey A (2012) Cytotoxic 2-phenylacrylnitriles, the importance of the Cyanide moiety and discovery of potent broad spectrum cytotoxic agents. Eur J Med Chem 57:65–73. https://doi.org/10.1016/j.ejmech.2012.09.019
doi: 10.1016/j.ejmech.2012.09.019
Tarleton M, Gilbert J, Robertson MJ, McCluskey A, Sakoff JA (2011) Library synthesis and cytotoxicity of a family of 2-phenylacrylonitriles and discovery of an estrogen dependent Breast cancer lead compound. Med Chem Commun 2:31–37. https://doi.org/10.1039/C0MD00147C
doi: 10.1039/C0MD00147C
Penthala NR, Janganati V, Bommagani S, Crooks PA (2014) Synthesis and evaluation of a series of quinolinyl trans-cyanostilbene analogs as anticancer agents. Med Chem Commun 5:886–890. https://doi.org/10.1039/C4MD00115J
doi: 10.1039/C4MD00115J
Penthala NR, Sonar VN, Horn J, Leggas M, Yadlapalli JSKB, Crooks PA (2013) Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents. Med Chem Commun 4:1073–1078. https://doi.org/10.1039/C3MD00120J
doi: 10.1039/C3MD00120J
Carta A, Briguglio I, Piras S et al (2011) 3-Aryl-2-[1H-benzotriazol-1-yl]acrylonitriles: a novel class of potent tubulin inhibitors. Eur J Med Chem 46:4151–4167. https://doi.org/10.1016/j.ejmech.2011.06.018
doi: 10.1016/j.ejmech.2011.06.018
Quiroga J, Cobo D, Insuasty B et al (2007) Synthesis and evaluation of novel E-2-(2-thienyl)- and Z-2-(3-thienyl)-3-acrylonitriles as antifungal and anticancer agents. Arch Pharm Chem Life Sci 340:603–606. https://doi.org/10.1002/ardp.200700082
doi: 10.1002/ardp.200700082
Yamazaki R, Nishiyama Y, Furuta T et al (2011) Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Mol Cancer Ther 10:1252–1263. https://doi.org/10.1158/1535-7163.MCT-10-0874
doi: 10.1158/1535-7163.MCT-10-0874
Schaller E, Ma A, Gosch LC et al (2021) New 3-aryl-2-(2-thienyl)acrylonitriles with high activity against hepatoma cells. Int J Mol Sci 22:2243. https://doi.org/10.3390/ijms22052243
doi: 10.3390/ijms22052243
Alam MS, Nam Y-J, Lee D-U (2013) Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents. Eur J Med Chem 69:790–797. https://doi.org/10.1016/j.ejmech.2013.08.031
doi: 10.1016/j.ejmech.2013.08.031
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4
doi: 10.1016/0022-1759(83)90303-4
Munshi A, Hobbs M, Meyn RE (2005) Clonogenic cell survival assay. Methods Mol Med 110:21–28. https://doi.org/10.1385/1-59259-869-2:021
doi: 10.1385/1-59259-869-2:021
Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J (2022) The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS ONE 17:e0279746. https://doi.org/10.1371/journal.pone.0279746
doi: 10.1371/journal.pone.0279746
Bello-Alvarez C, Moral-Morales AD, González-Arenas A, Camacho-Arroyo I (2021) Intracellular progesterone receptor and cSrc protein working together to regulate the activity of proteins involved in migration and invasion of human glioblastoma cells. Front Endocrinol 12:640298. https://doi.org/10.3389/fendo.2021.640298
doi: 10.3389/fendo.2021.640298
Abe T, Sakagami H, Amano S et al (2023) A comparative study of tumor-specificity and neurotoxicity between 3-styrylchromones and anti-cancer Drugs. Medicines 10:43. https://doi.org/10.3390/medicines10070043
doi: 10.3390/medicines10070043
Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537. https://doi.org/10.1016/s0008-6363(99)00384-3
doi: 10.1016/s0008-6363(99)00384-3
Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643. https://doi.org/10.1038/nrm2957
doi: 10.1038/nrm2957
Kufe DW, Major PP (1982) Studies on the mechanism of action of cytosine arabinoside. Med Pediatr Oncol 10:49–67. https://doi.org/10.1002/mpo.2950100708
doi: 10.1002/mpo.2950100708
Gosch LC (2022) In silico and in vitro investigations on the antiproliferative efficacy of novel tyrosine kinase inhibitors in hepatocellular carcinoma. Dissertation, Charité-Universitätsmedizin Berlin. https://d-nb.info/1253068992/34
Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704. https://doi.org/10.1023/B:APPT.0000045786.98031.1d
doi: 10.1023/B:APPT.0000045786.98031.1d
Coupe N, Guo L, Bridges E et al (2023) WNT5A-ROR2 axis mediates VEGF dependence of BRAF mutant Melanoma. Cell Oncol 46:391–407. https://doi.org/10.1007/s13402-022-00757-7
doi: 10.1007/s13402-022-00757-7
Corrie PG, Marshall A, Nathan PD et al (2018) Adjuvant bevacizumab for Melanoma patients at high risk of recurrence: survival analysis of the AVAST-M trial. Ann Oncol 29:1843–1852. https://doi.org/10.1093/annonc/mdy229
doi: 10.1093/annonc/mdy229
Beheldardi MF, Shahvir ZG, Asghari SM (2022) Apoptosis induction in human lung and colon Cancer cells via impeding VEGF signaling pathways. Mol Biol Rep 49:3637–3647. https://doi.org/10.1007/s11033-022-07203-9
doi: 10.1007/s11033-022-07203-9
Hirose M, Okaniwa M, Miyazaki T et al (2012) Design and synthesis of DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors: 3. Evaluation of 5-amino-linked thiazolo[5,4-d]pyrimidine and thiazolo[5,4-b]pyridine derivatives. Bioorg Med Chem 20:5600–5615. https://doi.org/10.1016/j.bmc.2012.07.032
doi: 10.1016/j.bmc.2012.07.032
Goel G (2018) Evolution of regorafenib from bench to bedside in Colorectal cancer: is it an attractive option or merely a ´´me too´´ drug. Cancer Manage Res 10:425–437. https://doi.org/10.2147/CMAR.S88825
doi: 10.2147/CMAR.S88825