Persistent sleep-disordered breathing independently contributes to metabolic syndrome in prepubertal children.
cardiovascular risk and obesity
metabolic syndrome
obstructive sleep apnea
sleep-disordered breathing
Journal
Pediatric pulmonology
ISSN: 1099-0496
Titre abrégé: Pediatr Pulmonol
Pays: United States
ID NLM: 8510590
Informations de publication
Date de publication:
Jan 2024
Jan 2024
Historique:
revised:
20
09
2023
received:
02
05
2023
accepted:
26
09
2023
pubmed:
18
10
2023
medline:
18
10
2023
entrez:
18
10
2023
Statut:
ppublish
Résumé
Obstructive sleep apnea (OSA) is a risk factor for metabolic syndrome (MetS) in adults, but its association in prepubertal children is still questionable due to the relatively limited cardiometabolic data available and the phenotypic heterogeneity. To identify the role of OSA as a potential mediator of MetS in prepubertal children. A total of 255 prepubertal children from the Childhood Adenotonsillectomy Trial were included, with standardized measurements taken before OSA treatment and 7 months later. MetS was defined if three or more of the following criteria were present: adiposity, high blood pressure, elevated glycemia, and dyslipidemia. A causal mediation analysis was conducted to assess the effect of OSA treatment on MetS. OSA treatment significantly impacted MetS, with the apnea-hypopnea index emerging as mediator (p = .02). This mediation role was not detected for any of the individual risk factors that define MetS. We further found that the relationship between MetS and OSA is ascribable to respiratory disturbance caused by the apnea episodes, while systemic inflammation as measured by C-reactive protein, is mediated by desaturation events and fragmented sleep. In terms of evolution, patients with MetS were significantly more likely to recover after OSA treatment (odds ratio = 2.56, 95% confidence interval [CI] 1.20-5.46; risk ratio = 2.06, 95% CI 1.19-3.54) than the opposite, patients without MetS to develop it. The findings point to a causal role of OSA in the development of metabolic dysfunction, suggesting that persistent OSA may increase the risk of MetS in prepubertal children. This mediation role implies a need for developing screening for MetS in children presenting OSA symptoms.
Sections du résumé
BACKGROUND
BACKGROUND
Obstructive sleep apnea (OSA) is a risk factor for metabolic syndrome (MetS) in adults, but its association in prepubertal children is still questionable due to the relatively limited cardiometabolic data available and the phenotypic heterogeneity.
OBJECTIVE
OBJECTIVE
To identify the role of OSA as a potential mediator of MetS in prepubertal children.
METHODS
METHODS
A total of 255 prepubertal children from the Childhood Adenotonsillectomy Trial were included, with standardized measurements taken before OSA treatment and 7 months later. MetS was defined if three or more of the following criteria were present: adiposity, high blood pressure, elevated glycemia, and dyslipidemia. A causal mediation analysis was conducted to assess the effect of OSA treatment on MetS.
RESULTS
RESULTS
OSA treatment significantly impacted MetS, with the apnea-hypopnea index emerging as mediator (p = .02). This mediation role was not detected for any of the individual risk factors that define MetS. We further found that the relationship between MetS and OSA is ascribable to respiratory disturbance caused by the apnea episodes, while systemic inflammation as measured by C-reactive protein, is mediated by desaturation events and fragmented sleep. In terms of evolution, patients with MetS were significantly more likely to recover after OSA treatment (odds ratio = 2.56, 95% confidence interval [CI] 1.20-5.46; risk ratio = 2.06, 95% CI 1.19-3.54) than the opposite, patients without MetS to develop it.
CONCLUSION
CONCLUSIONS
The findings point to a causal role of OSA in the development of metabolic dysfunction, suggesting that persistent OSA may increase the risk of MetS in prepubertal children. This mediation role implies a need for developing screening for MetS in children presenting OSA symptoms.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
111-120Subventions
Organisme : Gobierno de Aragón
Organisme : Leda J Sears Foundation
Organisme : European Regional Development Fund (FEDER)
ID : PID2020-115468RB-I00
Organisme : European Regional Development Fund (FEDER)
ID : PDC2021-120775-I00
Organisme : European Regional Development Fund (FEDER)
ID : PID2021-126734OB-C21
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : PRE2018-085219
Organisme : European Regional Development Fund
Organisme : CIBER-Consorcio Centro de Investigación Biomédica en Red
ID : CB19/01/00012
Organisme : National Institutes of Health (NIH)
ID : AG061824
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Lévy P, Kohler M, McNicholas WT, et al. Obstructive sleep apnoea syndrome. Nat Rev Dis Primers. 2015;1(June):15015. doi:10.1038/nrdp.2015.15
Marcus CL, Brooks LJ, Ward SD, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130(3):e714-e755. doi:10.1542/peds.2012-1672
Cappuccio FP, Cooper D, D'Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32(12):1484-1492. doi:10.1093/eurheartj/ehr007
Shan Z, Ma H, Xie M, et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015;38(3):529-537. doi:10.2337/dc14-2073
Spiegel K, Knutson K, Leproult R, Tasali E, Cauter EV. Sleep loss: A novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol. 2005;99(5):2008-2019. doi:10.1152/japplphysiol.00660.2005
Jennings JR, Muldoon MF, Hall M, Buysse DJ, Manuck SB. Self-reported sleep quality is associated with the metabolic syndrome. Sleep. 2007;30(2):219-223. doi:10.1093/sleep/30.2.219
Cappuccio FP, Taggart FM, Kandala NB, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619-626. doi:10.1093/sleep/31.5.619
Androutsos O, Moschonis G, Mavrogianni C, et al. Identification of lifestyle patterns, including sleep deprivation, associated with insulin resistance in children: the Healthy Growth Study. Eur J Clin Nutr. 2014;68(3):344-349. doi:10.1038/ejcn.2013.280
Bhattacharjee R, Kim J, Kheirandish-Gozal L, Gozal D. Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol. 2011;46(4):313-323. doi:10.1002/ppul.21370
Eckel RH, Alberti K, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375(9710):181-183. doi:10.1016/S0140-6736(09)61794-3
Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome. Circulation. 2005;112(17):2735-2752. doi:10.1161/CIRCULATIONAHA.105.169404
Alberti KGM, Zimmet P, Shaw J. The metabolic syndrome-a new worldwide definition. Lancet. 2005;366(9491):1059-1062. doi:10.1016/S0140-6736(05)67402-8
Morrison JA, Friedman LA, Gray-McGuire C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton lipid research clinics follow-up study. Pediatrics. 2007;120(2):340-345. doi:10.1542/peds.2006-1699
Magnussen CG, Koskinen J, Chen W, et al. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone. Circulation. 2010;122(16):1604-1611. doi:10.1161/CIRCULATIONAHA.110.940809
Redline S, Storfer-Isser A, Rosen CL, et al. Association between metabolic syndrome and sleep-disordered breathing in adolescents. Am J Respir Crit Care Med. 2007;176(4):401-408. doi:10.1164/rccm.200703-375OC
Rey-López JP, de Carvalho HB, de Moraes ACF, et al. Sleep time and cardiovascular risk factors in adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Sleep Med. 2014;15(1):104-110. doi:10.1016/j.sleep.2013.07.021
Tan HL, Kaditis AG. Phenotypic variance in pediatric obstructive sleep apnea. Pediatr Pulmonol. 2021;56(6):1754-1762. doi:10.1002/ppul.25309
Verhulst SL, Schrauwen N, Haentjens D, et al. Sleep-disordered breathing and the metabolic syndrome in overweight and obese children and adolescents. J Pediatr. 2007;150(6):608-612. doi:10.1016/j.jpeds.2007.01.051
Gozal D, Capdevila OS, Kheirandish-Gozal L, et al. Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children. Am J Respir Crit Care Med. 2008;177(10):1142-1149. doi:10.1164/rccm.200711-1670OC
Koren D, Gozal D, Philby MF, Bhattacharjee R, Kheirandish-Gozal L. Impact of obstructive sleep apnoea on insulin resistance in nonobese and obese children. Eur Respir J. 2016;47(4):1152-1161. doi:10.1183/13993003.01430-2015
Javaheri S, Storfer-Isser A, Rosen CL, Redline S. Sleep quality and elevated blood pressure in adolescents. Circulation. 2008;118(10):1034-1040. doi:10.1161/CIRCULATIONAHA.108.766410
Gangwisch JE, Malaspina D, Babiss LA, et al. Short sleep duration as a risk factor for hypercholesterolemia: analyses of The National Longitudinal Study of Adolescent Health. Sleep. 2010;33(7):956-961. doi:10.1093/sleep/33.7.956
Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents. Arch Pediatr Adolesc Med. 2003;157(8):821. doi:10.1001/archpedi.157.8.821
Viner RM. Prevalence of the insulin resistance syndrome in obesity. Arch Dis Child. 2005;90(1):10-14. doi:10.1136/adc.2003.036467
Zimmet P, Alberti G, Kaufman F, et al. The metabolic syndrome in children and adolescents. Lancet. 2007;369(9579):2059-2061. doi:10.1016/S0140-6736(07)60958-1
Mellerio H, Alberti C, Druet C, et al. Novel modeling of reference values of cardiovascular risk factors in children aged 7 to 20 years. Pediatrics. 2012;129(4):e1020-e1029. doi:10.1542/peds.2011-0449
Ahrens W, Moreno LA, Mårild S, et al. Metabolic syndrome in young children: definitions and results of the IDEFICS study. Int J Obes. 2014;38(S2):S4-S14. doi:10.1038/ijo.2014.130
Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. Psychol Methods. 2010;15(4):309-334. doi:10.1037/a0020761
Gaines J, Vgontzas AN, Fernandez-Mendoza J, et al. Inflammation mediates the association between visceral adiposity and obstructive sleep apnea in adolescents. Am J Physiol Endocrinol Metab. 2016;311(5):E851-E858. doi:10.1152/ajpendo.00249.2016
Erdim I, Akcay T, Yilmazer R, Erdur O, Kayhan FT. Is metabolic syndrome associated with obstructive sleep apnea in obese adolescents? J Clin Sleep Med. 2015;11(12):1371-1376. doi:10.5664/jcsm.5266
Gozal D, Dumin M, Koren D. Role of sleep quality in the metabolic syndrome. Diabetes Metab Syndr Obes. 2016;9:281-310. doi:10.2147/DMSO.S95120
Marcus CL, Moore RH, Rosen CL, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea. N Engl J Med. 2013;368(25):2366-2376. doi:10.1056/NEJMoa1215881
Martín-Montero A, Gutiérrez-Tobal GC, Kheirandish-Gozal L, et al. Heart rate variability as a potential biomarker of pediatric obstructive sleep apnea resolution. Sleep. 2022;45(2):1-9. doi:10.1093/sleep/zsab214
Yudkin JS. Insulin resistance and the metabolic syndrome-or the pitfalls of epidemiology. Diabetologia. 2007;50(8):1576-1586. doi:10.1007/s00125-007-0711-3
Haim A, Daniel S, Hershkovitz E, Goldbart AD, Tarasiuk A. Obstructive sleep apnea and metabolic disorders in morbidly obese adolescents. Pediatr Pulmonol. 2021;56(12):3983-3990. doi:10.1002/ppul.25652
Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation: R package for causal mediation analysis. J Stat Softw. 2014;59(5):1-38. doi:10.18637/jss.v059.i05
Scholle S, Zwacka G. Arousals and obstructive sleep apnea syndrome in children. Clin Neurophysiol. 2001;112(6):984-991. doi:10.1016/s1388-2457(01)00508-9
Isaiah A, Bertoni D, Pereira KD, Diaz-Abad M, Mitchell RB, Das G. Treatment-related changes in heart rate variability in children with sleep apnea. Otolaryngol Head Neck Surg. 2020;162(5):737-745. doi:10.1177/0194599820907882
Aljadeff G, Gozal D, Schechtman VL, Burrell B, Harper RM, Davidson Ward SL. Heart rate variability in children with obstructive sleep apnea. Sleep. 1997;20(2):151-157. doi:10.1093/sleep/20.2.151
Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288-310. doi:10.1016/j.neubiorev.2016.03.007.
Baumert M, Pamula Y, Martin J, et al. The effect of adenotonsillectomy for childhood sleep apnoea on cardiorespiratory control. ERJ Open Res. 2016;2(2):00003-2016. doi:10.1183/23120541.00003-2016
Gozall D. C-reactive protein and obstructive sleep apnea syndrome in children. Front Biosci. 2012;E4(7):2410-2422. doi:10.2741/e553
Marcus CL, Fernandes Do Prado LB, Lutz J, et al. Developmental changes in upper airway dynamics. J Appl Physiol. 2004;97(1):98-108. doi:10.1152/japplphysiol.00462.2003
Narang I, Mathew JL. Childhood obesity and obstructive sleep apnea. J Nutr Metab. 2012;2012:1-8. doi:10.1155/2012/134202
Gozal D, Tan HL, Kheirandish-Gozal L. Obstructive sleep apnea in children: a critical update. Nat Sci Sleep. 2013;5:109. doi:10.2147/NSS.S51907