Dynamic assessment of scapholunate ligament status by real-time magnetic resonance imaging: an exploratory clinical study.

Carpal instability Deep learning Dynamic instability FLASH Magnetic resonance imaging Real-time Scapholunate ligament tear

Journal

Skeletal radiology
ISSN: 1432-2161
Titre abrégé: Skeletal Radiol
Pays: Germany
ID NLM: 7701953

Informations de publication

Date de publication:
11 Oct 2023
Historique:
received: 07 06 2023
accepted: 25 09 2023
revised: 25 09 2023
medline: 11 10 2023
pubmed: 11 10 2023
entrez: 11 10 2023
Statut: aheadofprint

Résumé

Clinical-standard MRI is the imaging modality of choice for the wrist, yet limited to static evaluation, thereby potentially missing dynamic instability patterns. We aimed to investigate the clinical benefit of (dynamic) real-time MRI, complemented by automatic analysis, in patients with complete or partial scapholunate ligament (SLL) tears. Both wrists of ten patients with unilateral SLL tears (six partial, four complete tears) as diagnosed by clinical-standard MRI were imaged during continuous active radioulnar motion using a 1.5-T MRI scanner in combination with a custom-made motion device. Following automatic segmentation of the wrist, the scapholunate and lunotriquetral joint widths were analyzed across the entire range of motion (ROM). Mixed-effects model analysis of variance (ANOVA) followed by Tukey's posthoc test and two-way ANOVA were used for statistical analysis. With the increasing extent of SLL tear, the scapholunate joint widths in injured wrists were significantly larger over the entire ROM compared to those of the contralateral healthy wrists (p<0.001). Differences between partial and complete tears were most pronounced at 5°-15° ulnar abduction (p<0.001). Motion patterns and trajectories were altered. Complete SLL deficiency resulted in complex alterations of the lunotriquetral joint widths. Real-time MRI may improve the functional diagnosis of SLL insufficiency and aid therapeutic decision-making by revealing dynamic forms of dissociative instability within the proximal carpus. Static MRI best differentiates SLL-injured wrists at 5°-15° of ulnar abduction.

Identifiants

pubmed: 37819279
doi: 10.1007/s00256-023-04466-6
pii: 10.1007/s00256-023-04466-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Rajan PV, Day CS. Scapholunate Interosseous Ligament Anatomy and Biomechanics. J Hand Surg. 2015;40:1692–702.
doi: 10.1016/j.jhsa.2015.03.032
Schmitt R, Fröhner S, Fodor S, Christopoulos G, Kalb KH. Early radiological diagnostics for scapholunate dissociation (SLD). Radiologe. 2006;46:654–63.
doi: 10.1007/s00117-006-1400-9 pubmed: 16874503
Andersson JK. Treatment of scapholunate ligament injury: Current concepts. EFORT Open Rev. 2017;2:382–93.
doi: 10.1302/2058-5241.2.170016 pubmed: 29071123 pmcid: 5644424
Shih J-T, Hou Y-T, Lee H-M, Tan C-M. Chronic triangular fibrocartilage complex tears with distal radioulna joint instability: A new method of triangular fibrocartilage complex reconstruction. J Orthop Surg (Hong Kong). 2000;8:1–8.
doi: 10.1177/230949900000800102 pubmed: 12468868
Watson HK, Weinzweig J, Zeppieri J. The natural progression of scaphoid instability. Hand Clin. 1997;13:39–49.
doi: 10.1016/S0749-0712(21)00079-2 pubmed: 9048182
Sulkers GSI, Schep NWL, Maas M, van der Horst CM, Goslings JC, Strackee SD. The diagnostic accuracy of wrist cineradiography in diagnosing scapholunate dissociation. J Hand Surg Eur. 2014;39:263–71.
doi: 10.1177/1753193413489056
Andersson JK, Andernord D, Karlsson J, Fridén J. Efficacy of Magnetic Resonance Imaging and Clinical Tests in Diagnostics of Wrist Ligament Injuries: A Systematic Review. Arthroscopy. 2015;31:2014–2020.e2.
doi: 10.1016/j.arthro.2015.04.090 pubmed: 26095820
Kitay A, Wolfe SW. Scapholunate instability: current concepts in diagnosis and management. J Hand Surg Am. 2012;37:2175–96.
doi: 10.1016/j.jhsa.2012.07.035 pubmed: 23021178
Konopka G, Chim H. Optimal management of scapholunate ligament injuries. Orthop Res Rev. 2018;10:41–54.
pubmed: 30774459 pmcid: 6209348
Frahm J, Haase A, Matthaei D. Rapid NMR imaging of dynamic processes using the FLASII technique. Magn Resonance in Med. 1986;3:321–7.
doi: 10.1002/mrm.1910030217
Uecker M, Zhang S, Voit D, Karaus A, Merboldt K-D, Frahm J. Real-time MRI at a resolution of 20 ms. NMR Biomed. 2010;23:986–94.
doi: 10.1002/nbm.1585 pubmed: 20799371
Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50:1031–42.
doi: 10.1002/mrm.10611 pubmed: 14587014
Shaw CB, Foster BH, Borgese M, Boutin RD, Bateni C, Boonsri P, u. a. Real-time three-dimensional MRI for the assessment of dynamic carpal instability. PLoS ONE. 2019;14:e0222704.
doi: 10.1371/journal.pone.0222704 pubmed: 31536561 pmcid: 6752861
Boutin RD, Buonocore MH, Immerman I, Ashwell Z, Sonico GJ, Szabo RM. Real-Time Magnetic Resonance Imaging (MRI) during Active Wrist Motion—Initial Observations. Hug F, Herausgeber. PLoS ONE. 2013;8:e84004.
doi: 10.1371/journal.pone.0084004 pubmed: 24391865 pmcid: 3877133
Henrichon SS, Foster BH, Shaw C, Bayne CO, Szabo RM, Chaudhari AJ, u. a. Dynamic MRI of the wrist in less than 20 seconds: normal midcarpal motion and reader reliability. Skeletal Radiol. 2020;49:241–8.
doi: 10.1007/s00256-019-03266-1 pubmed: 31289900
Radke KL, Wollschläger LM, Nebelung S, Abrar DB, Schleich C, Boschheidgen M, u. a. Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease. Diagnostics (Basel). 2021;11:1077.
doi: 10.3390/diagnostics11061077 pubmed: 34208361 pmcid: 8231139
Kindynis P, Resnick D, Kang HS, Haller J, Sartoris DJ. Demonstration of the scapholunate space with radiography. Radiology. 1990;175:278–80.
doi: 10.1148/radiology.175.1.2315496 pubmed: 2315496
Tang JB, Xu J, Xie RG. Scaphoid and lunate movement in different ranges of carpal radioulnar deviation. J Hand Surg Am. 2011;36:25–30.
doi: 10.1016/j.jhsa.2010.09.022 pubmed: 21131137
Short WH, Werner FW, Green JK, Sutton LG, Brutus JP. Biomechanical evaluation of the ligamentous stabilizers of the scaphoid and lunate: part III. J Hand Surg Am. 2007;32:297–309.
doi: 10.1016/j.jhsa.2006.10.024 pubmed: 17336835 pmcid: 2062528
Moojen TM, Snel JG, Ritt MJPF, Venema HW, Kauer JMG, Bos KE. Scaphoid kinematics in vivo. J Hand Surg Am. 2002;27:1003–10.
doi: 10.1053/jhsu.2002.36519 pubmed: 12457350
Chennagiri RJR, Lindau TR. Assessment of scapholunate instability and review of evidence for management in the absence of arthritis. J Hand Surg Eur. 2013;38:727–38.
doi: 10.1177/1753193412473861
Manuel J, Moran SL. The Diagnosis and Treatment of Scapholunate Instability. Ortho Clin North Am. 2007;38:261–77.
doi: 10.1016/j.ocl.2007.02.003
Kakar S, Breighner RE, Leng S, McCollough CH, Moran SL, Berger RA, u. a. The Role of Dynamic (4D) CT in the Detection of Scapholunate Ligament Injury. J Wrist Surg. 2016;5:306–10.
doi: 10.1055/s-0035-1570463 pubmed: 27777822 pmcid: 5074832
Flores DV, Umpire DF, Mejía Gómez C, Saad T, Cerezal L, Pathria MN. Carpal Instability: Anatomy, Kinematics, Imaging, and Classification. Radio Graphics. 2021;41:E155–6.
Short WH, Werner FW, Green JK, Masaoka S. Biomechanical evaluation of ligamentous stabilizers of the scaphoid and lunate. J Hand Surg Am. 2002;27:991–1002.
doi: 10.1053/jhsu.2002.35878 pubmed: 12457349 pmcid: 1986797
Lee RKL, Ng AWH, Tong CSL, Griffith JF, Tse WL, Wong C, u. a. Intrinsic ligament and triangular fibrocartilage complex tears of the wrist: comparison of MDCT arthrography, conventional 3-T MRI, and MR arthrography. Skeletal Radiol. 2013;42:1277–85.
doi: 10.1007/s00256-013-1666-8 pubmed: 23812413
Berger RA. The gross and histologic anatomy of the scapholunate interosseous ligament. J Hand Surg Am. 1996;21:170–8.
doi: 10.1016/S0363-5023(96)80096-7 pubmed: 8683042

Auteurs

Lena Marie Wilms (LM)

Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany. lena.wilms@med.uni-duesseldorf.de.

Karl Ludger Radke (KL)

Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.

Daniel Benjamin Abrar (DB)

Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.

Jens Frahm (J)

Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, D-37077, Goettingen, Germany.

Dirk Voit (D)

Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, D-37077, Goettingen, Germany.

Simon Thelen (S)

Department of Orthopaedics and Trauma Surgery, Medical Faculty, University Dusseldorf, D-40225, Dusseldorf, Germany.

Dirk Klee (D)

Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.
Department of General Pediatrics, University Dusseldorf, Medical Faculty, University Children's Hospital, Heinrich-Heine-University Dusseldorf, Moorenstrasse 5, Düsseldorf, Germany.

Jan-Peter Grunz (JP)

Department of Diagnostic and Interventional Radiology, University Hospital Wurzburg, D-97080, Würzburg, Germany.

Anja Müller-Lutz (A)

Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.

Sven Nebelung (S)

Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Aachen, D-52074, Aachen, Germany.

Classifications MeSH