First experience with real-time magnetic resonance imaging-based investigation of respiratory influence on cardiac function in pediatric congenital heart disease patients with chronic right ventricular volume overload.
Cardiac magnetic resonance imaging
Congenital heart disease
Heart–lung interaction
Pediatric
Real-time imaging
Journal
Pediatric radiology
ISSN: 1432-1998
Titre abrégé: Pediatr Radiol
Pays: Germany
ID NLM: 0365332
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
31
05
2023
accepted:
04
09
2023
revised:
03
09
2023
medline:
7
12
2023
pubmed:
5
10
2023
entrez:
4
10
2023
Statut:
ppublish
Résumé
Congenital heart disease (CHD) is often associated with chronic right ventricular (RV) volume overload. Real-time magnetic resonance imaging (MRI) enables the analysis of cardiac function during free breathing. To evaluate the influence of respiration in pediatric patients with CHD and chronic RV volume overload. RV volume overload patients (n=6) and controls (n=6) were recruited for cardiac real-time MRI at 1.5 tesla during free breathing. Breathing curves from regions of interest reflecting the position of the diaphragm served for binning images in four different tidal volume classes, each in inspiration and expiration. Tidal volumes were estimated from these curves by data previously obtained by magnetic resonance-compatible spirometry. Ventricular volumes indexed to body surface area and Frank-Starling relationships referenced to the typical tidal volume indexed to body height (TTVi) were compared. Indexed RV end-diastolic volume (RV-EDVi) and indexed RV stroke volume (RV-SVi) increased during inspiration (RV-EDVi/TTVi: RV load: + 16 ± 4%; controls: + 22 ± 13%; RV-SVi/TTVi: RV load: + 21 ± 6%; controls: + 35 ± 17%; non-significant for comparison). The increase in RV ejection fraction during inspiration was significantly lower in RV load patients (RV load: + 1.1 ± 2.2%; controls: + 6.1 ± 1.5%; P=0.01). The Frank-Starling relationship of the RV provided a significantly reduced slope estimate in RV load patients (inspiration: RV load: 0.75 ± 0.11; controls: 0.92 ± 0.02; P=0.02). In pediatric patients with CHD and chronic RV volume overload, cardiac real-time MRI during free breathing in combination with respiratory-based binning indicates an impaired Frank-Starling relationship of the RV.
Sections du résumé
BACKGROUND
BACKGROUND
Congenital heart disease (CHD) is often associated with chronic right ventricular (RV) volume overload. Real-time magnetic resonance imaging (MRI) enables the analysis of cardiac function during free breathing.
OBJECTIVE
OBJECTIVE
To evaluate the influence of respiration in pediatric patients with CHD and chronic RV volume overload.
METHODS AND MATERIALS
METHODS
RV volume overload patients (n=6) and controls (n=6) were recruited for cardiac real-time MRI at 1.5 tesla during free breathing. Breathing curves from regions of interest reflecting the position of the diaphragm served for binning images in four different tidal volume classes, each in inspiration and expiration. Tidal volumes were estimated from these curves by data previously obtained by magnetic resonance-compatible spirometry. Ventricular volumes indexed to body surface area and Frank-Starling relationships referenced to the typical tidal volume indexed to body height (TTVi) were compared.
RESULTS
RESULTS
Indexed RV end-diastolic volume (RV-EDVi) and indexed RV stroke volume (RV-SVi) increased during inspiration (RV-EDVi/TTVi: RV load: + 16 ± 4%; controls: + 22 ± 13%; RV-SVi/TTVi: RV load: + 21 ± 6%; controls: + 35 ± 17%; non-significant for comparison). The increase in RV ejection fraction during inspiration was significantly lower in RV load patients (RV load: + 1.1 ± 2.2%; controls: + 6.1 ± 1.5%; P=0.01). The Frank-Starling relationship of the RV provided a significantly reduced slope estimate in RV load patients (inspiration: RV load: 0.75 ± 0.11; controls: 0.92 ± 0.02; P=0.02).
CONCLUSION
CONCLUSIONS
In pediatric patients with CHD and chronic RV volume overload, cardiac real-time MRI during free breathing in combination with respiratory-based binning indicates an impaired Frank-Starling relationship of the RV.
Identifiants
pubmed: 37794175
doi: 10.1007/s00247-023-05765-9
pii: 10.1007/s00247-023-05765-9
pmc: PMC10698081
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2608-2621Informations de copyright
© 2023. The Author(s).
Références
Circulation. 2007 Jul 31;116(5):545-51
pubmed: 17620511
Life (Basel). 2023 May 04;13(5):
pubmed: 37240773
Invest Radiol. 2019 Dec;54(12):757-766
pubmed: 31261294
J Am Coll Cardiol. 2012 Sep 11;60(11):1005-14
pubmed: 22921969
J Am Coll Cardiol. 2019 Apr 2;73(12):1494-1563
pubmed: 30121240
Eur J Cardiothorac Surg. 2004 May;25(5):728-34
pubmed: 15082274
Circ Cardiovasc Imaging. 2017 Mar;10(3):
pubmed: 28292861
J Cardiovasc Magn Reson. 2011 Jan 20;13:9
pubmed: 21251297
J Physiol Sci. 2014 Jul;64(4):221-32
pubmed: 24788476
Lung. 1981;159(4):175-86
pubmed: 7026909
Circulation. 2017 Oct 31;136(18):1703-1713
pubmed: 29084778
Ann Transl Med. 2020 Aug;8(15):967
pubmed: 32953767
Eur Heart J. 2021 Feb 11;42(6):563-645
pubmed: 32860028
Am Heart J. 2019 Jul;213:8-17
pubmed: 31071505
Eur Heart J Cardiovasc Imaging. 2020 Jan 1;21(1):102-113
pubmed: 31280290
J Physiol. 2022 Oct;600(19):4265-4285
pubmed: 35998082
Catheter Cardiovasc Interv. 2017 Sep 1;90(3):407-417
pubmed: 28296032
J Cardiovasc Magn Reson. 2013 Sep 12;15:79
pubmed: 24028285
Magn Reson Med. 2021 Nov;86(5):2692-2702
pubmed: 34272760
Ann Intensive Care. 2016 Dec;6(1):111
pubmed: 27858374
J Cardiovasc Magn Reson. 2020 Mar 12;22(1):19
pubmed: 32160925
Circ Res. 1979 Dec;45(6):719-28
pubmed: 498435
Am J Physiol Heart Circ Physiol. 2014 Mar;306(6):H816-24
pubmed: 24464754
Front Pediatr. 2023 Mar 16;11:1098248
pubmed: 37009270
Front Pediatr. 2020 Feb 14;8:40
pubmed: 32117843
Nature. 2020 Sep;585(7825):357-362
pubmed: 32939066
Pediatr Radiol. 2022 Jul;52(8):1462-1475
pubmed: 35353211
Cardiol Young. 2017 Jun;27(S3):S1-S105
pubmed: 28972464
Opt Lett. 2008 Jan 15;33(2):156-8
pubmed: 18197224
Eur Heart J. 1992 Nov;13 Suppl E:7-14
pubmed: 1478214
J Cardiovasc Magn Reson. 2013 Jun 13;15:51
pubmed: 23763839
Am J Cardiol. 2006 Apr 15;97(8):1238-43
pubmed: 16616033
Eur J Anaesthesiol. 2021 Apr 1;38(4):422-431
pubmed: 33399372
Front Physiol. 2021 Feb 26;12:557514
pubmed: 33716758
Cardiol Clin. 2020 Aug;38(3):317-324
pubmed: 32622487
Lancet. 2009 Oct 24;374(9699):1462-71
pubmed: 19683809
Eur Heart J Cardiovasc Imaging. 2015 Feb;16(2):198-209
pubmed: 25246504
Eur J Radiol Open. 2016 Mar 23;3:60-6
pubmed: 27069981
J Ultrasound. 2022 Sep 21;:
pubmed: 36127570
Curr Opin Pediatr. 2019 Oct;31(5):604-610
pubmed: 31356354
J Magn Reson Imaging. 2007 Jun;25(6):1136-40
pubmed: 17520717
Ann Transl Med. 2018 Sep;6(18):348
pubmed: 30370275
Eur Heart J Cardiovasc Imaging. 2019 Sep 1;20(9):990-1003
pubmed: 30993335
Heart. 2018 May;104(9):738-744
pubmed: 29092913
Pediatr Cardiol. 2015 Apr;36(4):796-801
pubmed: 25519915
J Med Imaging (Bellingham). 2016 Jul;3(3):034004
pubmed: 27660805
Circulation. 2019 Jan 8;139(2):269-285
pubmed: 30615500