The wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta microbiota are host specific and dominated by endosymbionts and environmental microorganisms.

Amplicon sequencing Cultivation Endosymbionts Gut microbiota Solitary bee

Journal

Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 07 04 2023
accepted: 19 09 2023
medline: 13 11 2023
pubmed: 5 10 2023
entrez: 4 10 2023
Statut: ppublish

Résumé

We characterized the microbial communities of the crop, midgut, hindgut, and ovaries of the wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta through 16S rRNA gene and ITS2 amplicon sequencing and a large-scale isolation campaign. The bacterial communities of these bees were dominated by endosymbionts of the genera Wolbachia and Spiroplasma. Bacterial and yeast genera representing the remaining predominant taxa were linked to an environmental origin. While only a single sampling site was examined for Andrena vaga, Anthophora plumipes, and Colletes cunicularius, and two sampling sites for Osmia cornuta, the microbiota appeared to be host specific: bacterial, but not fungal, communities generally differed between the analyzed bee species, gut compartments and ovaries. This may suggest a selective process determined by floral and host traits. Many of the gut symbionts identified in the present study are characterized by metabolic versatility. Whether they exert similar functionalities within the bee gut and thus functional redundancy remains to be elucidated.

Identifiants

pubmed: 37794084
doi: 10.1007/s00248-023-02304-9
pii: 10.1007/s00248-023-02304-9
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3013-3026

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Danforth BN, Minckley RL, Neff JL (2019) The solitary bees: biology, evolution, conservation. Princeton University Press
doi: 10.2307/j.ctvd1c929
Michez D, Rasmont P, Terzo M, Vereecken NJ (2019) Bees of Europe. NAP Editions, Paris, France
Oliveira W, Silva JLS, Porto RG, Cruz-Neto O, Tabarelli M, Viana BF, Peres CA, Lopes AV (2020) Plant and pollination blindness: risky business for human food security. Bioscience 70. https://doi.org/10.1093/biosci/biz139
Engel P et al (2016) The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. mBio 7. https://doi.org/10.1128/mBio.02164-15
Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A (2019) Drivers, diversity, and functions of the solitary-bee microbiota. Trends Microbiol 27. https://doi.org/10.1016/j.tim.2019.07.011
Voulgari-Kokota A, Ankenbrand MJ, Grimmer G, Steffan-Dewenter I, Keller A (2019) Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecol Evol 9. https://doi.org/10.1002/ece3.5599
McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA, Hale AR, Mueller UG (2017) Flowers and wild megachilid bees share microbes. Microb Ecol 73. https://doi.org/10.1007/s00248-016-0838-1
Keller A, Grimmer G, Steffan-Dewenter I (2013) Diverse microbiota identified in whole intact nest chambers of the red mason bee Osmia bicornis (Linnaeus 1758). PLoS One 8. https://doi.org/10.1371/journal.pone.0078296
McFrederick QS, Rehan SM (2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol Ecol 25. https://doi.org/10.1111/mec.13608
McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 21. https://doi.org/10.1111/j.1365-294X.2012.05496.x
Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS (2019) Floral and foliar source affect the bee nest microbial community. Microb Ecol 78. https://doi.org/10.1007/s00248-018-1300-3
Graystock P, Rehan SM, McFrederick QS (2017) Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conservation Genetics 18. https://doi.org/10.1007/s10592-017-0937-7
Voulgari-Kokota A, Grimmer G, Steffan-Dewenter I, Keller A (2019) Bacterial community structure and succession in nests of two megachilid bee genera. FEMS Microbiol Ecol 95. https://doi.org/10.1093/femsec/fiy218
McFrederick QS, Rehan SM (2019) Wild bee pollen usage and microbial communities co-vary across landscapes. Microb Ecol 77. https://doi.org/10.1007/s00248-018-1232-y
Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8. https://doi.org/10.1111/j.1462-2920.2005.00893.x
Kapheim KM, Johnson MM, Jolley M (2021) Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci Rep 11. https://doi.org/10.1038/s41598-021-82573-x
McFrederick QS, Wcislo WT, Hout MC, Mueller UG (2014) Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiol Ecol 88. https://doi.org/10.1111/1574-6941.12302
Nguyen PN, Rehan SM (2022) Developmental microbiome of the small carpenter bee, Ceratina calcarata. Environmental DNA. https://doi.org/10.1002/edn3.291
Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees, Mol Ecol 20. https://doi.org/10.1111/j.1365-294X.2010.04959.x
Gilliam M, Buchmann SL, Lorenz BJ, Schmalzel RJ (1990). Bacteria belonging to the genus Bacillus associated with three species of solitary bees, Apidologie 21. https://doi.org/10.1051/apido:19900202
Cohen H, McFrederick QS, Philpott SM (2020) Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb Ecol 80:897–907
doi: 10.1007/s00248-020-01549-y pubmed: 32572535
McFrederick QS, Vuong HQ, Rothman JA (2018) Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int J Syst Evol Microbiol 68. https://doi.org/10.1099/ijsem.0.002758
Lozo J, Berić T, Terzić-Vidojević A, Stanković S, Fira D, Stanisavljević L (2015) Microbiota associated with pollen, bee bread, larvae and adults of solitary bee Osmia cornuta (Hymenoptera: Megachilidae). Bull Entomol Res 105. https://doi.org/10.1017/S0007485315000292
Holley JC, Jackson MN, Pham AT, Hatcher SC, Moran NA (2022) Carpenter bees ( Xylocopa ) harbor a distinctive gut microbiome related to that of honey bees and bumble bees. Appl Environ Microbiol 88. https://doi.org/10.1128/aem.00203-22
Saeed A, White JA (2015) Surveys for maternally-inherited endosymbionts reveal novel and variable infections within solitary bee species. J Invertebr Pathol 132. https://doi.org/10.1016/j.jip.2015.09.011
Vuong HQ, Mcfrederick QS, Angert E (2019) Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biol Evol 11. https://doi.org/10.1093/gbe/evz136
Snauwaert I, Roels SP, van Nieuwerburgh F, van Landschoot A, de Vuyst L, Vandamme P (2016) Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int J Food Microbiol 221. https://doi.org/10.1016/j.ijfoodmicro.2015.12.009
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13. https://doi.org/10.1038/nmeth.3869
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10. https://doi.org/10.14806/ej.17.1.200
doi: 10.14806/ej.17.1.200
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41. https://doi.org/10.1093/nar/gks1219
Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2021) UNITE general FASTA release for eukaryotes. Version 10.05.2021. UNITE Community. https://doi.org/10.15156/BIO/1280089
doi: 10.15156/BIO/1280089
McMurdie PJ, Holmes S (2013) phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217
doi: 10.1371/journal.pone.0061217 pubmed: 23630581 pmcid: 3632530
Oksanen J et al (2020) Package ‘vegan’ title community ecology package version 2.5-7. R 2.5.  https://github.com/vegandevs/vegan
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15. https://doi.org/10.1186/s13059-014-0550-8
Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, Komagata K (2003) Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol Cult Coll 19:91–99
Wieme AD, Spitaels F, Aerts M, de Bruyne K, van Landschoot A, Vandamme P (2014) Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 185. https://doi.org/10.1016/j.ijfoodmicro.2014.05.003
Dumolin C et al (2019) Introducing SPeDE: high-throughput dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption–ionization time of flight mass spectrometry data. mSystems 4. https://doi.org/10.1128/msystems.00437-19
Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JRW, Kersters K, Vandamme P (1999) Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol :49. https://doi.org/10.1099/00207713-49-2-405
Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques :50. https://doi.org/10.2144/000113672
Praet J, Parmentier A, Schmid-Hempel R, Meeus I, Smagghe G, Vandamme P (2018) Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ Microbiol 20. https://doi.org/10.1111/1462-2920.13973
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67. https://doi.org/10.1099/ijsem.0.001755
Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64. https://doi.org/10.1099/ijs.0.059774-0
Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 73. https://doi.org/10.1023/A:1001761008817
Eleftherianos L, Atri J, Accetta J, Castillo JC (2013) Endosymbiotic bacteria in insects: guardians of the immune system? Front Physiol 4. https://doi.org/10.3389/fphys.2013.00046
Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29. https://doi.org/10.1016/S0965-1748(98)00119-2
Balvín O, Roth S, Talbot B, Reinhardt K (2018) Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts. Sci Rep 8. https://doi.org/10.1038/s41598-018-25545-y
Lee CC, Lin CY, Tseng SP, Matsuura K, Yang CCS (2020) Ongoing coevolution of wolbachia and a widespread invasive ant, anoplolepis gracilipes. Microorganisms 8. https://doi.org/10.3390/microorganisms8101569
Ramalho MDO, Kim Z, Wang S, Moreau CS (2021) Wolbachia across social insects: patterns and implications. Ann Entomol Soc Am 114. https://doi.org/10.1093/aesa/saaa053
Ravoet J, de Smet L, Meeus I, Smagghe G, Wenseleers T, de Graaf DC (2014) Widespread occurrence of honey bee pathogens in solitary bees. J Invertebr Pathol 122. https://doi.org/10.1016/j.jip.2014.08.007
Schwarz RS, Teixeira ÉW, Tauber JP, Birke JM, Martins MF, Fonseca I, Evans JD (2014) Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. Microbiologyopen 3. https://doi.org/10.1002/mbo3.172
Cisak E, Wójcik-Fatla A, Zając V, Sawczyn A, Sroka J, Dutkiewicz J (2015) Spiroplasma - An emerging arthropod-borne pathogen? Ann Agric Environ Med 22. https://doi.org/10.5604/12321966.1185758
Lo WS, Ku C, Chen LL, Chang TH, Kuo CH (2013) Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense. Genome Biol Evol 5. https://doi.org/10.1093/gbe/evt108
Hamilton PT, Leong JS, Koop BF, Perlman SJ (2014) Transcriptional responses in a Drosophila defensive symbiosis. Mol Ecol 23. https://doi.org/10.1111/mec.12603
Chater KF (2016) Recent advances in understanding streptomyces. F1000Res 5. https://doi.org/10.12688/f1000research.9534.1
Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7. https://doi.org/10.1038/nrmicro2163
Fu YS, Hussain F, Habib N, Khan IU, Chu X, Duan YQ, Zhi XY, Chen X, Li WJ (2017) Sphingobacterium soli sp. Nov., isolated from soil. Int J Syst Evol Microbiol 67. https://doi.org/10.1099/ijsem.0.001946
Staley JT, Irgens RL, Brenner DJ (1987) Enhydrobacter aerosaccus gen. nov., sp. nov., a gas-vacuolated, facultatively anaerobic, heterotrophic rod. Int J Syst Bacteriol 37. https://doi.org/10.1099/00207713-37-3-289
Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol Rev 35. https://doi.org/10.1111/j.1574-6976.2011.00269.x
Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ (2020) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. 128. https://doi.org/10.1111/jam.14506
Walterson AM, Stavrinides J (2015) Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 39. https://doi.org/10.1093/femsre/fuv027
Morales Moreira ZP, Helgason BL, Germida JJ (2022) Assembly and potential transmission of the Lens culinaris seed microbiome. FEMS Microbiol Ecol:97. https://doi.org/10.1093/femsec/fiab166
Campisano A et al (2014) Interkingdom transfer of the acne-causing agent, propionibacterium acnes, from human to grapevine. Mol Biol Evol 31. https://doi.org/10.1093/molbev/msu075
González-Benítez N, Martín-Rodríguez I, Cuesta I, Arrayás M, White JF, Molina MC (2021) Endophytic microbes are tools to increase tolerance in jasione plants against arsenic stress. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.664271
Kosecka-Strojek M, Buda A, Miȩdzobrodzki J (2018) Staphylococcal ecology and epidemiology. Pet-to-Man Travelling Staphylococci: A World in Progress. https://doi.org/10.1016/B978-0-12-813547-1.00002-9
doi: 10.1016/B978-0-12-813547-1.00002-9
Mundt JO (1982) The ecology of the streptococci. Microb Ecol 8. https://doi.org/10.1007/BF02010675
Stefanini I (2018) Yeast-insect associations: It takes guts. Yeast 35. https://doi.org/10.1002/yea.3309
Santos ARO, Leon MP, Barros KO, Freitas LFD, Hughes AFS, Morais PB, Lachance MA, Rosa CA (2018) Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations. Int J Syst Evol Microbiol 68. https://doi.org/10.1099/ijsem.0.002675
Pozo MI, Herrera CM, Lachance MA, Verstrepen K, Lievens B, Jacquemyn H (2016) Species coexistence in simple microbial communities: unravelling the phenotypic landscape of co-occurring Metschnikowia species in floral nectar. Environ Microbiol 18. https://doi.org/10.1111/1462-2920.13037
Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1. https://doi.org/10.1016/S1567-1356(00)00003-9
Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, Strano CP, Palmeri V (2017) A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol:73. https://doi.org/10.1007/s00248-016-0864-z
Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 56. https://doi.org/10.1093/mmy/myx134
Iturrieta-González I, García D, Gené J (2021) Novel species of Cladosporium from environmental sources in Spain. MycoKeys 77. https://doi.org/10.3897/mycokeys.77.60862
Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 57. https://doi.org/10.1007/s00284-008-9202-0
Carina Audisio M, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res :166. https://doi.org/10.1016/j.micres.2010.01.003
Lagier JC et al (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18. https://doi.org/10.1111/1469-0691.12023
Lagier JC et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1. https://doi.org/10.1038/nmicrobiol.2016.203
Bell-Sakyi L, Beliavskaia A, Hartley CS, Jones L, Luu L, Haines LR, Hamilton JGC, Darby AC, Makepeace BL (2021) Isolation in natural host cell lines of wolbachia strains wpip from the mosquito culex pipiens and wpap from the sand fly phlebotomus papatasi. Insects 12. https://doi.org/10.3390/insects12100871
Liao CH, Chen TA (1982) Media and methods for culture of Spiroplasmas. In Plant and Insect Mycoplasma Techniques. https://doi.org/10.1007/978-94-015-1164-3_6
doi: 10.1007/978-94-015-1164-3_6
Keller A, McFrederick QS, Dharampal P, Steffan S, Danforth BN, Leonhardt SD (2021) (More than) Hitchhikers through the network: the shared microbiome of bees and flowers. Curr Opin Insect Sci 44. https://doi.org/10.1016/j.cois.2020.09.007
Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev. 37. https://doi.org/10.1111/1574-6976.12025
Keller A, Brandel A, Becker MC, Balles R, Abdelmohsen UR, Ankenbrand MJ, Sickel W (2018) Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome 6. https://doi.org/10.1186/s40168-018-0614-1
Subta P et al (2020) Bacterial communities in three parts of intestinal tracts of carpenter bees (Xylocopa tenuiscapa). Insects 11. https://doi.org/10.3390/insects11080497
Callegari M et al (2021) Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 7. https://doi.org/10.1038/s41522-021-00212-9
Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14. https://doi.org/10.1038/nrmicro.2016.43
Krams R et al (2022) Dominance of fructose-associated Fructobacillus in the gut microbiome of bumblebees (Bombus terrestris) inhabiting natural forest meadows. Insects 13. https://doi.org/10.3390/insects13010098
Bosmans L, Pozo MI, Verreth C, Crauwels S, Wilberts L, Sobhy IS, Wäckers F, Jacquemyn H, Lievens B (2018) Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS One 13. https://doi.org/10.1371/journal.pone.0204612
Smessaert J, van Geel M, Verreth C, Crauwels S, Honnay O, Keulemans W, Lievens B (2019) Temporal and spatial variation in bacterial communities of “Jonagold” apple (Malus x domestica Borkh.) and “Conference” pear (Pyrus communis L.) floral nectar. Microbiologyopen 8. https://doi.org/10.1002/mbo3.918
Lu P et al (2021) Profiles of Bacillus spp. Isolated from the rhizosphere of Suaeda glauca and their potential to promote plant growth and suppress fungal phytopathogens. J Microbiol Biotechnol :31. https://doi.org/10.4014/jmb.2105.05010
Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17. https://doi.org/10.1016/j.tim.2009.09.006
Chevrette MG et al (2019) The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 10. https://doi.org/10.1038/s41467-019-08438-0
Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36. https://doi.org/10.1111/j.1574-6976.2011.00313.x
Jang J, Forbes VE, Sadowsky MJ (2022) Probable role of Cutibacterium acnes in the gut of the polychaete Capitella teleta. Science of the Total Environment 809. https://doi.org/10.1016/j.scitotenv.2021.151127
Stahly DP, Andrews RE, Yousten AA (2006) The Genus Bacillus–insect pathogens. In The Prokaryotes. https://doi.org/10.1007/0-387-30744-3_17
doi: 10.1007/0-387-30744-3_17
Gilliam M, Buchmann SL, Lorenz BJ (1984) Microbial flora of the larval provisions of the solitary bees, Centris pallida and Anthophora sp. Apidologie 15. https://doi.org/10.1051/apido:19840101
Chen T, Dai YJ, Ding JF, Yuan S, Ni JP (2008) N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation 19. https://doi.org/10.1007/s10532-007-9170-2
Aguirre-Güitrón L, Calderón-Santoyo M, Bautista-Rosales PU, Ragazzo-Sánchez JA (2019) Application of powder formulation of Meyerozyma caribbica for postharvest control of Colletotrichum gloeosporioides in mango (Mangifera indica L.). LWT 113. https://doi.org/10.1016/j.lwt.2019.108271
Kthiri Z, Jabeur M ben, Chairi F, López-Cristoffanini C, López-Carbonell M, Serret MD, Araus JL, Karmous C, Hamada W (2021) Exploring the potential of meyerozyma guilliermondii on physiological performances and defense response against fusarium crown rot on durum wheat. Pathogens 10. https://doi.org/10.3390/pathogens10010052
Ganapathy B, Yahya A, Ibrahim N (2019) Bioremediation of palm oil mill effluent (POME) using indigenous Meyerozyma guilliermondii. Environ Sci Pollut Res 26. https://doi.org/10.1007/s11356-019-04334-8
Lemos Junior WJF, Binati RL, Felis GE, Slaghenaufi D, Ugliano M, Torriani S (2020) Volatile organic compounds from Starmerella bacillaris to control gray mold on apples and modulate cider aroma profile. Food Microbiol 89. https://doi.org/10.1016/j.fm.2020.103446
De Clercq V, Roelants SLKW, Castelein MG, De Maeseneire SL, Soetaert WK (2021) Elucidation of the natural function of sophorolipids produced by Starmerella bombicola. J Fungi 7. https://doi.org/10.3390/jof7110917
Sipiczki M (2020) Metschnikowia pulcherrima and related Pulcherrimin-producing yeasts: fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms 8:1029. https://doi.org/10.3390/microorganisms8071029
doi: 10.3390/microorganisms8071029 pubmed: 32664630 pmcid: 7409158

Auteurs

Amanda Hettiarachchi (A)

Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.

Margo Cnockaert (M)

Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.

Marie Joossens (M)

Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.

Antoine Gekière (A)

Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium.

Ivan Meeus (I)

Laboratory of Agrozoology, Department of Plants of Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.

Nicolas J Vereecken (NJ)

Agroecology Lab, Université libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, 1050, Brussels, Belgium.

Denis Michez (D)

Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium.

Guy Smagghe (G)

Laboratory of Agrozoology, Department of Plants of Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.

Peter Vandamme (P)

Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium. Peter.Vandamme@ugent.be.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH