Tamoxifen-predictive value of gene expression signatures in premenopausal breast cancer: data from the randomized SBII:2 trial.
Gene expression signatures
Predictive
Premenopausal
Prognostic
Tamoxifen
Journal
Breast cancer research : BCR
ISSN: 1465-542X
Titre abrégé: Breast Cancer Res
Pays: England
ID NLM: 100927353
Informations de publication
Date de publication:
29 09 2023
29 09 2023
Historique:
received:
28
06
2023
accepted:
25
09
2023
medline:
2
10
2023
pubmed:
29
9
2023
entrez:
29
9
2023
Statut:
epublish
Résumé
Gene expression (GEX) signatures in breast cancer provide prognostic information, but little is known about their predictive value for tamoxifen treatment. We examined the tamoxifen-predictive value and prognostic effects of different GEX signatures in premenopausal women with early breast cancer. RNA from formalin-fixed paraffin-embedded tumor tissue from premenopausal women randomized between two years of tamoxifen treatment and no systemic treatment was extracted and successfully subjected to GEX profiling (n = 437, NanoString Breast Cancer 360™ panel). The median follow-up periods for a recurrence-free interval (RFi) and overall survival (OS) were 28 and 33 years, respectively. Associations between GEX signatures and tamoxifen effect were assessed in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+ /HER2-) tumors using Kaplan-Meier estimates and Cox regression. The prognostic effects of GEX signatures were studied in the entire cohort. False discovery rate adjustments (q-values) were applied to account for multiple hypothesis testing. In patients with ER+/HER2- tumors, FOXA1 expression below the median was associated with an improved effect of tamoxifen after 10 years with regard to RFi (hazard ratio [HR] Expression of FOXA1 is a promising predictive biomarker for tamoxifen effect in ER+/HER2- premenopausal breast cancer. In addition, each of the signatures BC proliferation, Hypoxia, Mast cells, and the GEX of AR, ESR1, and PGR had prognostic value, also after adjusting for established prognostic factors. Trial registration This trial was retrospectively registered in the ISRCTN database the 6th of December 2019, trial ID: https://clinicaltrials.gov/ct2/show/ISRCTN12474687 .
Sections du résumé
BACKGROUND
Gene expression (GEX) signatures in breast cancer provide prognostic information, but little is known about their predictive value for tamoxifen treatment. We examined the tamoxifen-predictive value and prognostic effects of different GEX signatures in premenopausal women with early breast cancer.
METHODS
RNA from formalin-fixed paraffin-embedded tumor tissue from premenopausal women randomized between two years of tamoxifen treatment and no systemic treatment was extracted and successfully subjected to GEX profiling (n = 437, NanoString Breast Cancer 360™ panel). The median follow-up periods for a recurrence-free interval (RFi) and overall survival (OS) were 28 and 33 years, respectively. Associations between GEX signatures and tamoxifen effect were assessed in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+ /HER2-) tumors using Kaplan-Meier estimates and Cox regression. The prognostic effects of GEX signatures were studied in the entire cohort. False discovery rate adjustments (q-values) were applied to account for multiple hypothesis testing.
RESULTS
In patients with ER+/HER2- tumors, FOXA1 expression below the median was associated with an improved effect of tamoxifen after 10 years with regard to RFi (hazard ratio [HR]
CONCLUSIONS
Expression of FOXA1 is a promising predictive biomarker for tamoxifen effect in ER+/HER2- premenopausal breast cancer. In addition, each of the signatures BC proliferation, Hypoxia, Mast cells, and the GEX of AR, ESR1, and PGR had prognostic value, also after adjusting for established prognostic factors. Trial registration This trial was retrospectively registered in the ISRCTN database the 6th of December 2019, trial ID: https://clinicaltrials.gov/ct2/show/ISRCTN12474687 .
Identifiants
pubmed: 37773134
doi: 10.1186/s13058-023-01719-z
pii: 10.1186/s13058-023-01719-z
pmc: PMC10540453
doi:
Substances chimiques
Tamoxifen
094ZI81Y45
Antineoplastic Agents, Hormonal
0
Banques de données
ISRCTN
['ISRCTN12474687']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
110Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377(19):1836–46.
pubmed: 29117498
pmcid: 5734609
doi: 10.1056/NEJMoa1701830
Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, et al. Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst. 1998;90(18):1371–88.
pubmed: 9747868
doi: 10.1093/jnci/90.18.1371
Yao J, Deng K, Huang J, Zeng R, Zuo J. Progress in the understanding of the mechanism of tamoxifen resistance in breast cancer. Front Pharmacol. 2020;11: 592912.
pubmed: 33362547
pmcid: 7758911
doi: 10.3389/fphar.2020.592912
The Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.
doi: 10.1016/S0140-6736(05)66544-0
Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res. 2007;9(1):6.
doi: 10.1186/bcr1639
The Early Breast Cancer Trialists’ Collaborative Group. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771–84.
doi: 10.1016/S0140-6736(11)60993-8
Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783–90.
pubmed: 23816962
doi: 10.1200/JCO.2012.46.1558
Pu M, Messer K, Davies SR, Vickery TL, Pittman E, Parker BA, et al. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res Treat. 2020;179(1):197–206.
pubmed: 31542876
doi: 10.1007/s10549-019-05446-y
Lundgren C, Bendahl PO, Church SE, Ekholm M, Fernö M, Forsare C, et al. PAM50 subtyping and ROR score add long-term prognostic information in premenopausal breast cancer patients. NPJ Breast Cancer. 2022;8(1):61.
pubmed: 35534504
pmcid: 9085780
doi: 10.1038/s41523-022-00423-z
Sparano JA, Gray RJ, Ravdin PM, Makower DF, Pritchard KI, Albain KS, et al. Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. N Engl J Med. 2019;380(25):2395–405.
pubmed: 31157962
pmcid: 6709671
doi: 10.1056/NEJMoa1904819
Kalinsky K, Barlow WE, Gralow JR, Meric-Bernstam F, Albain KS, Hayes DF, et al. 21-Gene assay to inform chemotherapy benefit in node-positive breast cancer. N Engl J Med. 2021;385(25):2336–47.
pubmed: 34914339
pmcid: 9096864
doi: 10.1056/NEJMoa2108873
Sestak I, Cuzick J, Dowsett M, Lopez-Knowles E, Filipits M, Dubsky P, et al. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score. J Clin Oncol. 2014;33(8):916–22.
pubmed: 25332252
doi: 10.1200/JCO.2014.55.6894
Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379(2):111–21.
pubmed: 29860917
pmcid: 6172658
doi: 10.1056/NEJMoa1804710
Swain SM, Tang G, Brauer HA, Goerlitz DS, Lucas PC, Robidoux A, et al. NSABP B-41, a randomized neoadjuvant trial: genes and signatures associated with pathologic complete response. Clin Cancer Res. 2020;26(16):4233–41.
pubmed: 32371537
pmcid: 7724952
doi: 10.1158/1078-0432.CCR-20-0152
Asleh K, Brauer HA, Sullivan A, Lauttia S, Lindman H, Nielsen TO, et al. Predictive biomarkers for adjuvant capecitabine benefit in early-stage triple-negative breast cancer in the FinXX clinical trial. Clin Cancer Res. 2020;26(11):2603–14.
pubmed: 32005747
doi: 10.1158/1078-0432.CCR-19-1945
Kim C, Tang G, Pogue-Geile KL, Costantino JP, Baehner FL, Baker J, et al. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor–positive breast cancer. J Clin Oncol. 2011;29(31):4160–7.
pubmed: 21947828
pmcid: 3208536
doi: 10.1200/JCO.2010.32.9615
Tomita S, Zhang Z, Nakano M, Ibusuki M, Kawazoe T, Yamamoto Y, et al. Estrogen receptor α gene ESR1 amplification may predict endocrine therapy responsiveness in breast cancer patients. Cancer Sci. 2009;100(6):1012–7.
pubmed: 19320640
doi: 10.1111/j.1349-7006.2009.01145.x
Vidula N, Yau C, Wolf D, Rugo HS. Androgen receptor gene expression in primary breast cancer. NPJ Breast Cancer. 2019;5(1):47.
pubmed: 31840050
pmcid: 6904475
doi: 10.1038/s41523-019-0142-6
De Amicis F, Thirugnansampanthan J, Cui Y, Selever J, Beyer A, Parra I, et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast cancer Res Treat. 2010;121(1):1–11.
pubmed: 19533338
doi: 10.1007/s10549-009-0436-8
Kensler KH, Regan MM, Heng YJ, Baker GM, Pyle ME, Schnitt SJ, et al. Prognostic and predictive value of androgen receptor expression in postmenopausal women with Estrogen receptor-positive breast cancer: results from the Breast International Group Trial 1–98. Breast Cancer Res. 2019;21(1):30.
pubmed: 30795773
pmcid: 6387478
doi: 10.1186/s13058-019-1118-z
Ingebriktsen LM, Finne K, Akslen LA, Wik E. A novel age-related gene expression signature associates with proliferation and disease progression in breast cancer. Br J Cancer. 2022;127(10):1865–75.
pubmed: 35995935
pmcid: 9643541
doi: 10.1038/s41416-022-01953-w
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.
pubmed: 15591335
doi: 10.1056/NEJMoa041588
Tutzauer J, Sjöström M, Holmberg E, Karlsson P, Killander F, Leeb-Lundberg LMF, et al. Breast cancer hypoxia in relation to prognosis and benefit from radiotherapy after breast-conserving surgery in a large, randomised trial with long-term follow-up. Br J Cancer. 2022;126(8):1145–56.
pubmed: 35140341
pmcid: 9023448
doi: 10.1038/s41416-021-01630-4
Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics. 2015;8:54.
pubmed: 26297356
pmcid: 4546262
doi: 10.1186/s12920-015-0129-6
Shou J, Lai Y, Xu J, Huang J. Prognostic value of FOXA1 in breast cancer: a systematic review and meta-analysis. Breast. 2016;27:35–43.
pubmed: 27212698
doi: 10.1016/j.breast.2016.02.009
Rangel N, Fortunati N, Osella-Abate S, Annaratone L, Isella C, Catalano MG, et al. FOXA1 and AR in invasive breast cancer: new findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer. 2018;18(1):703.
pubmed: 29970021
pmcid: 6029370
doi: 10.1186/s12885-018-4624-y
Lundgren C, Bendahl PO, Ekholm M, Fernö M, Forsare C, Krüger U, et al. Tumour-infiltrating lymphocytes as a prognostic and tamoxifen predictive marker in premenopausal breast cancer: data from a randomised trial with long-term follow-up. Breast Cancer Res. 2020;22(1):140.
pubmed: 33357231
pmcid: 7758933
doi: 10.1186/s13058-020-01364-w
Rydén L, Jönsson P-E, Chebil G, Dufmats M, Fernö M, Jirström K, et al. Two years of adjuvant tamoxifen in premenopausal patients with breast cancer: a randomised, controlled trial with long-term follow-up. Eur J Cancer. 2005;41(2):256–64.
pubmed: 15661551
doi: 10.1016/j.ejca.2004.06.030
Ekholm M, Bendahl P-O, Fernö M, Nordenskjöld B, Stål O, Rydén L. Two years of adjuvant tamoxifen provides a survival benefit compared with no systemic treatment in premenopausal patients with primary breast cancer: long-term follow-up (> 25 years) of the Phase III SBII:2pre trial. J Clin Oncol. 2016;34(19):2232–8.
pubmed: 27161974
doi: 10.1200/JCO.2015.65.6272
Ekholm M, Bendahl PO, Fernö M, Nordenskjöld B, Stål O, Rydén L. Effects of adjuvant tamoxifen over three decades on breast cancer-free and distant recurrence-free interval among premenopausal women with oestrogen receptor-positive breast cancer randomised in the Swedish SBII:2pre trial. Eur J Cancer. 2019;110:53–61.
pubmed: 30769227
doi: 10.1016/j.ejca.2018.12.034
Gourgou-Bourgade S, Cameron D, Poortmans P, Asselain B, Azria D, Cardoso F, et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann Oncol. 2015;26(5):873–9.
pubmed: 25725046
doi: 10.1093/annonc/mdv106
NanoString. nCounter® Breast Cancer 360TM Panel, Product Bulletin. 2020. https://www.nanostring.com/products/ncounter-assays-panels/oncology/breast-cancer-360/ . Accessed 15 March 2023.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300.
Documentation R. Scaling and Centering of Matrix-like Objects. https://stat.ethz.ch/R-manual/R-devel/library/base/html/scale.html . Accessed 20 May 2023.
Wei T Simko V. R package 'corrplot': Visualization of a Correlation Matrix. 2021. https://github.com/taiyun/corrplot . Accessed 20 May 2023.
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313
Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika. 1982;69(1):239–41.
doi: 10.1093/biomet/69.1.239
Altman DG, McShane LM, Sauerbrei W, Taube SE, Taube SE. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. PLoS Med. 2012;9(5): e1001216.
pubmed: 22675273
pmcid: 3362085
doi: 10.1371/journal.pmed.1001216
McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer. 2005;93(4):387–91.
pubmed: 16106245
pmcid: 2361579
doi: 10.1038/sj.bjc.6602678
Schroth W, Büttner FA, Kandabarau S, Hoppe R, Fritz P, Kumbrink J, et al. Gene expression signatures of BRCAness and tumor inflammation define subgroups of early-stage hormone receptor–positive breast cancer patients. Clin Cancer Res. 2020;26(24):6523–34.
pubmed: 33008814
doi: 10.1158/1078-0432.CCR-20-1923
Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D’Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7.
pubmed: 24451109
pmcid: 3978822
doi: 10.1186/bcr3599
Honma N, Horii R, Iwase T, Saji S, Younes M, Ito Y, et al. Proportion of estrogen or progesterone receptor expressing cells in breast cancers and response to endocrine therapy. Breast. 2014;23(6):754–62.
pubmed: 25176593
doi: 10.1016/j.breast.2014.08.003
Kuske B, Naughton C, Moore K, Macleod KG, Miller WR, Clarke R, et al. Endocrine therapy resistance can be associated with high estrogen receptor alpha (ERalpha) expression and reduced ERalpha phosphorylation in breast cancer models. Endocr Relat Cancer. 2006;13(4):1121–33.
pubmed: 17158758
doi: 10.1677/erc.1.01257
Brett JO, Spring LM, Bardia A, Wander SA. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res. 2021;23(1):85.
pubmed: 34392831
pmcid: 8365900
doi: 10.1186/s13058-021-01462-3
Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43(1):27–33.
pubmed: 21151129
doi: 10.1038/ng.730
Fu X, Jeselsohn R, Pereira R, Hollingsworth EF, Creighton CJ, Li F, et al. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A. 2016;113(43):E6600–9.
pubmed: 27791031
pmcid: 5087040
doi: 10.1073/pnas.1612835113
Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481(7381):389–93.
pubmed: 22217937
pmcid: 3272464
doi: 10.1038/nature10730
Metovic J, Borella F, D’Alonzo M, Biglia N, Mangherini L, Tampieri C, et al. FOXA1 in breast cancer: a luminal marker with promising prognostic and predictive impact. Cancers (Basel). 2022;14(19):4699.
pubmed: 36230619
doi: 10.3390/cancers14194699
Badve S, Turbin D, Thorat MA, Morimiya A, Nielsen TO, Perou CM, et al. FOXA1 expression in breast cancer–correlation with luminal subtype A and survival. Clin Cancer Res. 2007;13(15 Pt 1):4415–21.
pubmed: 17671124
doi: 10.1158/1078-0432.CCR-07-0122
Tanaka K, Tokunaga E, Yamashita N, Sagara Y, Ohi Y, Taguchi K, et al. The relationship between the expression of FOXA1 and GATA3 and the efficacy of neoadjuvant endocrine therapy. Breast Cancer. 2017;24(3):384–92.
pubmed: 27473079
doi: 10.1007/s12282-016-0714-3
Arruabarrena-Aristorena A, Maag JLV, Kittane S, Cai Y, Karthaus WR, Ladewig E, et al. FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer. Cancer Cell. 2020;38(4):534-50.e9.
pubmed: 32888433
pmcid: 8311901
doi: 10.1016/j.ccell.2020.08.003
Winter SC, Buffa FM, Silva P, Miller C, Valentine HR, Turley H, et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 2007;67(7):3441–9.
pubmed: 17409455
doi: 10.1158/0008-5472.CAN-06-3322
Buffa FM, Harris AL, West CM, Miller CJ. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer. 2010;102(2):428–35.
pubmed: 20087356
pmcid: 2816644
doi: 10.1038/sj.bjc.6605450
Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, et al. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4444 cases. Breast Cancer Res Treat. 2008;107(2):249–57.
pubmed: 17431762
doi: 10.1007/s10549-007-9546-3
Cai Z, Tang B, Chen L, Lei W. Mast cell marker gene signature in head and neck squamous cell carcinoma. BMC Cancer. 2022;22(1):577.
pubmed: 35610596
pmcid: 9128261
doi: 10.1186/s12885-022-09673-3