How Does Zinc Improve Salinity Tolerance? Mechanisms and Future Prospects.

ROS antioxidants genes expression osmolytes accumulation photosynthesis salinity stress zinc

Journal

Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181

Informations de publication

Date de publication:
08 Sep 2023
Historique:
received: 01 08 2023
revised: 24 08 2023
accepted: 28 08 2023
medline: 28 9 2023
pubmed: 28 9 2023
entrez: 28 9 2023
Statut: epublish

Résumé

Salinity stress (SS) is a serious abiotic stress and a major constraint to agricultural productivity across the globe. High SS negatively affects plant growth and yield by altering soil physio-chemical properties and plant physiological, biochemical, and molecular processes. The application of micronutrients is considered an important practice to mitigate the adverse effects of SS. Zinc (Zn) is an important nutrient that plays an imperative role in plant growth, and it could also help alleviate the effects of salt stress. Zn application improves seed germination, seedling growth, water uptake, plant water relations, nutrient uptake, and nutrient homeostasis, therefore improving plant performance and saline conditions. Zn application also protects the photosynthetic apparatus from salinity-induced oxidative stress and improves stomata movement, chlorophyll synthesis, carbon fixation, and osmolytes and hormone accumulation. Moreover, Zn application also increases the synthesis of secondary metabolites and the expression of stress responsive genes and stimulates antioxidant activities to counter the toxic effects of salt stress. Therefore, to better understand the role of Zn in plants under SS, we have discussed the various mechanisms by which Zn induces salinity tolerance in plants. We have also identified diverse research gaps that must be filled in future research programs. The present review article will fill the knowledge gaps on the role of Zn in mitigating salinity stress. This review will also help readers to learn more about the role of Zn and will provide new suggestions on how this knowledge can be used to develop salt tolerance in plants by using Zn.

Identifiants

pubmed: 37765371
pii: plants12183207
doi: 10.3390/plants12183207
pmc: PMC10534951
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Références

Phytochemistry. 2010 Mar;71(4):338-50
pubmed: 20079507
PLoS One. 2021 Feb 2;16(2):e0246493
pubmed: 33529247
Plant Sci. 2021 Feb;303:110774
pubmed: 33487358
Front Plant Sci. 2023 Mar 09;13:1017282
pubmed: 36994320
Plants (Basel). 2023 Feb 13;12(4):
pubmed: 36840183
Environ Sci Pollut Res Int. 2018 Aug;25(24):23883-23896
pubmed: 29881963
Cells. 2021 Aug 07;10(8):
pubmed: 34440792
Plant Physiol. 2016 Dec;172(4):2445-2458
pubmed: 27770060
Curr Biol. 2019 May 20;29(10):R360-R362
pubmed: 31112684
Plants (Basel). 2021 May 18;10(5):
pubmed: 34069971
J Plant Physiol. 2015 Apr 15;178:84-91
pubmed: 25800225
Int J Phytoremediation. 2014;16(7-12):704-18
pubmed: 24933880
PeerJ. 2023 Jan 9;11:e14621
pubmed: 36643649
Plants (Basel). 2020 Aug 13;9(8):
pubmed: 32823617
Plant Physiol Biochem. 2022 Sep 1;186:52-63
pubmed: 35809436
PLoS One. 2018 Sep 4;13(9):e0202175
pubmed: 30180173
Front Plant Sci. 2017 Mar 14;8:281
pubmed: 28352273
Ecotoxicol Environ Saf. 2021 Jan 15;208:111627
pubmed: 33396147
J Toxicol Environ Health A. 2012;75(13-15):722-34
pubmed: 22788360
Environ Sci Pollut Res Int. 2019 Apr;26(11):11288-11299
pubmed: 30793248
Life (Basel). 2021 Jun 10;11(6):
pubmed: 34200706
Curr Opin Plant Biol. 2002 Jun;5(3):218-23
pubmed: 11960739
Plant Cell Environ. 2011 May;34(5):859-69
pubmed: 21332511
Front Plant Sci. 2020 Feb 21;11:118
pubmed: 32153619
Front Plant Sci. 2014 Sep 16;5:467
pubmed: 25278946
Int J Mol Sci. 2012 Nov 20;13(11):15321-42
pubmed: 23203128
Plants (Basel). 2023 Feb 04;12(4):
pubmed: 36840038
Plant Physiol Biochem. 2021 Sep;166:376-392
pubmed: 34153882
Front Plant Sci. 2023 Mar 31;14:1138048
pubmed: 37063177
Mol Biol Rep. 2022 Dec;49(12):11255-11271
pubmed: 35802276
BMC Plant Biol. 2015 Dec 29;15:303
pubmed: 26715057
Plants (Basel). 2023 Mar 11;12(6):
pubmed: 36986971
Front Plant Sci. 2020 Sep 16;11:553087
pubmed: 33042180
Plants (Basel). 2023 Mar 01;12(5):
pubmed: 36903975
Front Plant Sci. 2022 Jun 08;13:870241
pubmed: 35783965
Int J Mol Sci. 2013 Feb 07;14(2):3540-55
pubmed: 23434657
Ecotoxicol Environ Saf. 2021 Dec 20;227:112921
pubmed: 34678626
PLoS One. 2022 Feb 22;17(2):e0263194
pubmed: 35192615
Sci Rep. 2018 Aug 17;8(1):12349
pubmed: 30120319
Plants (Basel). 2020 Jun 30;9(7):
pubmed: 32630094
Curr Opin Biotechnol. 2014 Apr;26:115-24
pubmed: 24679267
Biomolecules. 2020 Nov 02;10(11):
pubmed: 33147820
Plants (Basel). 2023 Mar 07;12(6):
pubmed: 36986898
Int J Mol Sci. 2018 Jan 15;19(1):
pubmed: 29342961
J Plant Physiol. 2007 Jun;164(6):695-701
pubmed: 16777263
Physiol Mol Biol Plants. 2018 Sep;24(5):833-843
pubmed: 30150858
R Soc Open Sci. 2018 Aug 8;5(8):171809
pubmed: 30224982
Front Plant Sci. 2022 Nov 24;13:976179
pubmed: 36507430
New Phytol. 2000 May;146(2):185-205
pubmed: 33862977
J Plant Physiol. 2012 Feb 15;169(3):226-33
pubmed: 22070973
Annu Rev Plant Biol. 2008;59:651-81
pubmed: 18444910
Plants (Basel). 2023 Jan 12;12(2):
pubmed: 36679075
Physiol Plant. 2020 Feb;168(2):256-277
pubmed: 30980533
Plants (Basel). 2020 Feb 12;9(2):
pubmed: 32059414
Saudi J Biol Sci. 2013 Apr;20(2):183-93
pubmed: 23961235
Annu Rev Plant Biol. 2002;53:247-73
pubmed: 12221975
Plants (Basel). 2023 Feb 21;12(5):
pubmed: 36903837
Appl Biochem Biotechnol. 2016 Feb;178(4):796-809
pubmed: 26541161
Protoplasma. 2015 Sep;252(5):1335-45
pubmed: 25673554
Front Plant Sci. 2023 Mar 10;14:1053869
pubmed: 36968428
Plant Physiol. 2003 Apr;131(4):1748-55
pubmed: 12692333
Pestic Biochem Physiol. 2017 Oct;142:117-122
pubmed: 29107234
J Exp Bot. 2014 Jul;65(12):2963-79
pubmed: 24755280
Front Plant Sci. 2022 Sep 27;13:920570
pubmed: 36237512
Front Plant Sci. 2021 Oct 29;12:739467
pubmed: 34777420
Antioxidants (Basel). 2022 Feb 03;11(2):
pubmed: 35204192
Tsitologiia. 2017;59(1):34-44
pubmed: 30188101
Saudi J Biol Sci. 2021 Aug;28(8):4276-4290
pubmed: 34354410
World J Gastrointest Pathophysiol. 2014 Nov 15;5(4):496-513
pubmed: 25400994
Recent Pat Food Nutr Agric. 2013 Dec;5(3):169-81
pubmed: 24215471
J Plant Physiol. 2014 May 15;171(9):723-31
pubmed: 24810769
Sci Total Environ. 2020 Jan 1;698:134235
pubmed: 31783465
Curr Opin Plant Biol. 2009 Jun;12(3):259-66
pubmed: 19524482
Plant Physiol. 2014 Nov;166(3):1387-402
pubmed: 25271266
New Phytol. 2007;173(4):677-702
pubmed: 17286818
J Exp Bot. 2018 Jan 4;69(2):201-212
pubmed: 28992278
Plant Physiol Biochem. 2020 Feb;147:31-42
pubmed: 31838316
Environ Sci Pollut Res Int. 2019 Oct;26(28):28951-28961
pubmed: 31385255
Plants (Basel). 2023 Jan 10;12(2):
pubmed: 36679037
Plant Physiol Biochem. 2019 Feb;135:160-166
pubmed: 30553137
Ecotoxicol Environ Saf. 2020 Sep 1;200:110732
pubmed: 32460049
Plant Physiol Biochem. 2017 Jul;116:139-149
pubmed: 28558283
Front Plant Sci. 2016 Mar 31;7:347
pubmed: 27066020
Biomolecules. 2022 Nov 24;12(12):
pubmed: 36551176
Plant Physiol Biochem. 2017 Jun;115:449-460
pubmed: 28478373
Adv Protein Chem Struct Biol. 2013;90:67-117
pubmed: 23582202
Chemosphere. 2020 Jul;251:126419
pubmed: 32171133
Front Plant Sci. 2022 Aug 22;13:973782
pubmed: 36072329
BMC Plant Biol. 2021 Jul 10;21(1):331
pubmed: 34246235
Physiol Mol Biol Plants. 2015 Oct;21(4):567-72
pubmed: 26597356
Plant Physiol Biochem. 2018 Feb;123:268-280
pubmed: 29275208
J Agric Food Chem. 2010 Aug 25;58(16):9092-102
pubmed: 23654236
Chemosphere. 2023 Jun;327:138479
pubmed: 36965530
Biochem Cell Biol. 2007 Jun;85(3):273-82
pubmed: 17612622
Sci Rep. 2015 Sep 30;5:14278
pubmed: 26419216
Biology (Basel). 2020 Sep 18;9(9):
pubmed: 32962161

Auteurs

Jinhua Shao (J)

China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China.
Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.

Wei Tang (W)

China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China.

Kai Huang (K)

China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China.

Can Ding (C)

China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China.

Haocheng Wang (H)

China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China.
Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.

Wenlong Zhang (W)

China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China.
Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.

Ronghui Li (R)

College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China.

Muhammad Aamer (M)

Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.

Muhammad Umair Hassan (MU)

Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.

Rehab O Elnour (RO)

Biology Department, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub, Abha 64353, Saudi Arabia.

Mohamed Hashem (M)

Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia.

Guoqin Huang (G)

Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.

Sameer H Qari (SH)

Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.

Classifications MeSH