Therapeutic potential of low-molecular weight lignin model polymer fractions for treating skin lesions in animals: a pilot study.
Antibacterial agent
Lignin model compound
Low-molecular weight DHP fractions
Skin lesions
Staphylococcus spp.
Journal
Veterinary research communications
ISSN: 1573-7446
Titre abrégé: Vet Res Commun
Pays: Switzerland
ID NLM: 8100520
Informations de publication
Date de publication:
22 Sep 2023
22 Sep 2023
Historique:
received:
14
07
2023
accepted:
19
09
2023
medline:
22
9
2023
pubmed:
22
9
2023
entrez:
22
9
2023
Statut:
aheadofprint
Résumé
Bacterial infections and resistance to antibiotics are increasingly severe problems. In recent years, Staphylococcus species have emerged as important pathogens in animals and humans. Current therapeutic methods against these species have serious disadvantages; therefore new agents with antibacterial potential, such as plant-based substances, are very important in therapy. We report a pilot study with new method of fractioning the dehydrogenate polymer DHP obtained from coniferyl alcohol and application of the low-MW fractions of 200-3000 Da for antibacterial activity in healing animal lesions. In vivo experiments were conducted on the dogs having a skin lesion. Dogs were treated with the suspension containing the low-MW DHP fractions as the active ingredient, in combination with alginate for 7 days. Cytological smears and microbiological analyses of the affected area were performed. Staphylococcus spp. was isolated from lesions in all dogs from our research. The results show that the low-MW DHP suspension in alginate promotes skin healing and reduction of the infection of the lesions in the affected animals. Pharmaceutical composition containing the low-MW DHP fractions exerts a soothing effect on the subject in wound treatment. Reduction in the number of bacteria by 30% and more were noticed in 6 dogs, while in 4 dogs this percentage is above 50%. No side effects were noticed. Synthesized lignin oligomers may have a significant place as antimicrobial and skin healing agents, especially since an increasing number of multidrug-resistant staphylococci are found on the skin lesions in animals.
Identifiants
pubmed: 37737468
doi: 10.1007/s11259-023-10224-9
pii: 10.1007/s11259-023-10224-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-68/2022-14/200053
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-68/2022-14/200143
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-2/2022-14/20-0302202
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-2/2022-14/20-0302202
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-68/2022-14/200053
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Américo ÁVLDS, Nunes KM, de Assis FFV, Dias SR, Passos CTS, Morini AC, de Araújo JA, Castro KCF, da Silva SKR, Barata LES, Minervino AHH (2020) Efficacy of phytopharmaceuticals from the amazonian plant Libidibia ferrea for wound healing in dogs. Front Vet Sci 7:244. https://doi.org/10.3389/fvets.2020.00244
doi: 10.3389/fvets.2020.00244
pubmed: 32656247
pmcid: 7326013
Baquero F, Negri MC, Morosini MI, Blazquez J (1998) Antibiotic-selective environments. Clin Infect Dis 27(Suppl 1):S5–S11. https://doi.org/10.1086/514916
doi: 10.1086/514916
pubmed: 9710666
Gioia C, Re GL, Lawoko M, Berglund L (2018) Tunable thermosetting epoxies based on fractionated and well-characterized lignins. Am Chem Soc 140:4054–4061. https://doi.org/10.1021/jacs.7b13620
doi: 10.1021/jacs.7b13620
Ionescu MI (2017) Are herbal products an alternative to antibiotics? In: Kırmusaoğlu S (ed) Bacterial Pathogenesis and Antibacterial Control Intech open 57789:3–22. https://doi.org/10.5772/intechopen.72110
doi: 10.5772/intechopen.72110
Jiao GJ, Peng P, Sun SL, Geng ZC, She D (2019) Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer. Int J Biol Macromol 127,:544–554. https://doi.org/10.1016/j.ijbiomac.2019.01.076
doi: 10.1016/j.ijbiomac.2019.01.076
pubmed: 30660565
Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8:118. https://doi.org/10.1186/s13756-019-0559-6
doi: 10.1186/s13756-019-0559-6
pubmed: 31346459
pmcid: 6636059
Lobo FCM, Franco AR, Fernandes EM, Reis RL (2021) An overview of the antimicrobial properties of lignocellulosic materials. Molecules 26(6):1749. https://doi.org/10.3390/molecules26061749
doi: 10.3390/molecules26061749
pubmed: 33804712
pmcid: 8004007
Mourenza Á, Gil JA, Mateos LM, Letek M (2020) Alternative anti-infective treatments to traditional antibiotherapy against staphylococcal veterinary pathogens. Antibiotics 9(10):702. https://doi.org/10.3390/antibiotics9100702
doi: 10.3390/antibiotics9100702
pubmed: 33076497
pmcid: 7602553
Mueller RS, Bergvall K, Bensignor E, Bond R (2012) A review of topical therapy for skin infections with bacteria and yeast. Vet Dermatol. 23(4):330–341. https://doi.org/10.1111/j.1365-3164.2012.01057.x
Pal K, Paulson A, Rousseau D (2009) Biopolymers in controlled-release delivery systems. In: Kasapis S, Norton IT, Ubbink JB (eds.) Modern biopolymer science: bridging the divide between fundamental treatise and industrial application. Elsevier, p. 519–557. https://doi.org/10.1016/B978-0-12-374195-0.00016-1
Popova TP, Ignatov I, Petrova TE, Kaleva MD, Huether F, Karadzhov SD (2022) Antimicrobial activity in Vitro of cream from plant extracts and Nanosilver, and clinical research in vivo on Veterinary Clinical cases. Cosmetics 9(6):122. https://doi.org/10.3390/cosmetics9060122
doi: 10.3390/cosmetics9060122
Price PE, Fagervik-Morton H, Mudge E, Beele H, Ruiz JC, Nystrøm TH, Lindholm C, Maume S, Melby-Østergaard B, Peter Y, Romanelli M, Seppanen S, Serena T, Sibbald G, Soriano JV, White W, Wollina U, Woo K, Wyndham-White C, Harding K (2008) Dressing-related pain inpatients with chronicwounds: an international patient perspective. Int Wound J 5(2):159–171. https://doi.org/10.1111/j.1742-481X.2008.00471.x
doi: 10.1111/j.1742-481X.2008.00471.x
pubmed: 18494622
pmcid: 7951668
Rossi CC, Pereira MF, Giambiagi-deMarval M (2020) Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 43:e20190065. https://doi.org/10.1590/1678-4685-GMB-2019-0065
doi: 10.1590/1678-4685-GMB-2019-0065
pubmed: 32052827
pmcid: 7198029
Savini V, Barbarini D, Polakowska K, Gherardi G, Białecka A, Kasprowicz A, Polilli E (2013) Methicillin-resistant Staphylococcus pseudintermedius infection in a bone marrow transplant recipient. J Clin Microbiol 51(5):1636–1638. https://doi.org/10.1128/JCM.03310-12
doi: 10.1128/JCM.03310-12
pubmed: 23486715
pmcid: 3647946
Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71. https://doi.org/10.3390/polym4010046
doi: 10.3390/polym4010046
Spasojević D, Zmejkoski D, Glamočlija J, Nikolić M, Soković M, Milošević V, Jarić I, Stojanović M, Marinković E, Barisani-Asenbauer T, Prodanović R, Jovanović M, Radotić K (2016) Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. Int J Antimicrob Agents 6(48):732–735. https://doi.org/10.1016/j.ijantimicag.2016.08.014
doi: 10.1016/j.ijantimicag.2016.08.014
Sugiarto S, Leow Y, Li Tan C, Wang G, Kai D (2022) How far is lignin from being a biomedical material? Bioact Mater 8:71–94. https://doi.org/10.1016/j.bioactmat.2021.06.023
doi: 10.1016/j.bioactmat.2021.06.023
pubmed: 34541388
Vinardell MP, Mitjans M (2017) Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci 18(6):1219. https://doi.org/10.3390/ijms18061219
doi: 10.3390/ijms18061219
pubmed: 28590454
pmcid: 5486042
Xie Y, Chen X, Jiang C, Wu H, Ye Z (2019) Preparation of oligomeric dehydrogenation polymer and characterization of its antibacterial properties. BioResources 14(2):2842–2860. https://doi.org/10.3390/molecules27051466
doi: 10.3390/molecules27051466
Zmejkoski D, Spasojević D, Orlovska I, Kozyrovska N, Soković M, Glamočlija J, Dmitrović S, Matović B, Tasić N, Maksimović V, Sosnin M, Radotić K (2018) Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. Int J Biol Macromol 118:494–503. https://doi.org/10.1016/j.ijbiomac.2018.06.067
doi: 10.1016/j.ijbiomac.2018.06.067
pubmed: 29909035