The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 09 2023
21 09 2023
Historique:
received:
07
03
2022
accepted:
16
08
2023
medline:
25
9
2023
pubmed:
22
9
2023
entrez:
22
9
2023
Statut:
epublish
Résumé
The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.
Identifiants
pubmed: 37735473
doi: 10.1038/s41467-023-41067-2
pii: 10.1038/s41467-023-41067-2
pmc: PMC10514085
doi:
Substances chimiques
Co-Repressor Proteins
0
Transcription Factors
0
histone deacetylase 3
EC 3.5.1.98
Ncor1 protein, mouse
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5871Informations de copyright
© 2023. Springer Nature Limited.
Références
Leprince, D. et al. A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306, 395–397 (1983).
pubmed: 6316156
doi: 10.1038/306395a0
Nunn, M. F., Seeburg, P. H., Moscovici, C. & Duesberg, P. H. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306, 391–395 (1983).
pubmed: 6316155
doi: 10.1038/306391a0
Malinge, S., Izraeli, S. & Crispino, J. D. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113, 2619–2628 (2009).
pubmed: 19139078
pmcid: 2661853
doi: 10.1182/blood-2008-11-163501
Rao, V. N., Papas, T. S. & Reddy, E. S. erg, a human ets-related gene on chromosome 21: alternative splicing, polyadenylation, and translation. Science 237, 635–639 (1987).
pubmed: 3299708
doi: 10.1126/science.3299708
Loughran, S. J. et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9, 810–819 (2008).
pubmed: 18500345
doi: 10.1038/ni.1617
Taoudi, S. et al. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev. 25, 251–262 (2011).
pubmed: 21245161
pmcid: 3034900
doi: 10.1101/gad.2009211
Knudsen, K. J. et al. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes Dev. 29, 1915–1929 (2015).
pubmed: 26385962
pmcid: 4579349
doi: 10.1101/gad.268409.115
Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).
pubmed: 20887958
doi: 10.1016/j.stem.2010.07.016
Pimkin, M. et al. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res. 24, 1932–1944 (2014).
pubmed: 25319996
pmcid: 4248311
doi: 10.1101/gr.164178.113
Beck, D. et al. Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes. Blood 122, e12–e22 (2013).
pubmed: 23974199
doi: 10.1182/blood-2013-03-490425
Marcucci, G. et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J. Clin. Oncol. 23, 9234–9242 (2005).
pubmed: 16275934
doi: 10.1200/JCO.2005.03.6137
Metzeler, K. H. et al. ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J. Clin. Oncol. 27, 5031–5038 (2009).
pubmed: 19752345
doi: 10.1200/JCO.2008.20.5328
Goldberg, L. et al. Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia. Blood 122, 2694–2703 (2013).
pubmed: 23974202
pmcid: 3795462
doi: 10.1182/blood-2013-01-477133
Thoms, J. A. et al. ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 117, 7079–7089 (2011).
pubmed: 21536859
doi: 10.1182/blood-2010-12-317990
Fukushima, Y. et al. [AML(M7) associated with t(16;21)(p11;q22) showing relapse after unrelated bone marrow transplantation and disappearance of TLS/FUS-ERG mRNA]. Rinsho Ketsueki 42, 502–506 (2001).
Panagopoulos, I., Gorunova, L., Zeller, B., Tierens, A. & Heim, S. Cryptic FUS-ERG fusion identified by RNA-sequencing in childhood acute myeloid leukemia. Oncol. Rep. 30, 2587–2592 (2013).
pubmed: 24068373
pmcid: 3839954
doi: 10.3892/or.2013.2751
Zhang, J. et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 48, 1481–1489 (2016).
pubmed: 27776115
pmcid: 5144107
doi: 10.1038/ng.3691
Zaliova, M. et al. ERG deletions in childhood acute lymphoblastic leukemia with DUX4 rearrangements are mostly polyclonal, prognostically relevant and their detection rate strongly depends on screening method sensitivity. Haematologica 104, 1407–1416 (2019).
pubmed: 30630977
pmcid: 6601096
doi: 10.3324/haematol.2018.204487
Rainis, L. et al. The proto-oncogene ERG in megakaryoblastic leukemias. Cancer Res. 65, 7596–7602 (2005).
pubmed: 16140924
doi: 10.1158/0008-5472.CAN-05-0147
Birger, Y. et al. Perturbation of fetal hematopoiesis in a mouse model of Down syndrome’s transient myeloproliferative disorder. Blood 122, 988–998 (2013).
pubmed: 23719302
pmcid: 3739041
doi: 10.1182/blood-2012-10-460998
Stankiewicz, M. J. & Crispino, J. D. ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood 113, 3337–3347 (2009).
pubmed: 19168790
pmcid: 2665899
doi: 10.1182/blood-2008-08-174813
Salek-Ardakani, S. et al. ERG is a megakaryocytic oncogene. Cancer Res. 69, 4665–4673 (2009).
pubmed: 19487285
doi: 10.1158/0008-5472.CAN-09-0075
Wang, X. et al. Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J. 21, 5225–5234 (2002).
pubmed: 12356738
pmcid: 129049
doi: 10.1093/emboj/cdf527
Thirant, C. et al. ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia. Cancer Cell 31, 452–465 (2017).
pubmed: 28292442
doi: 10.1016/j.ccell.2017.02.006
Mandoli, A. et al. The hematopoietic transcription factors RUNX1 and ERG prevent AML1-ETO oncogene overexpression and onset of the apoptosis program in t(8;21) AMLs. Cell Rep. 17, 2087–2100 (2016).
pubmed: 27851970
doi: 10.1016/j.celrep.2016.08.082
Huang, Y. et al. The leukemogenic TCF3-HLF complex rewires enhancers driving cellular identity and self-renewal conferring EP300 vulnerability. Cancer Cell 36, 630–644.e639 (2019).
pubmed: 31735627
doi: 10.1016/j.ccell.2019.10.004
Tursky, M. L. et al. Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias. Leukemia 29, 819–827 (2015).
pubmed: 25306899
doi: 10.1038/leu.2014.299
Rieger, M. A., Smejkal, B. M. & Schroeder, T. Improved prospective identification of megakaryocyte-erythrocyte progenitor cells. Br. J. Haematol. 144, 448–451 (2009).
pubmed: 19036095
doi: 10.1111/j.1365-2141.2008.07419.x
Xie, Y. et al. Reduced Erg dosage impairs survival of hematopoietic stem and progenitor cells. Stem Cells 35, 1773–1785 (2017).
pubmed: 28436588
doi: 10.1002/stem.2627
Yassin, M. et al. A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia 33, 2061–2077 (2019).
pubmed: 30705411
doi: 10.1038/s41375-019-0386-z
Wang, G. G., Pasillas, M. P. & Kamps, M. P. Persistent transactivation by meis1 replaces hox function in myeloid leukemogenesis models: evidence for co-occupancy of meis1-pbx and hox-pbx complexes on promoters of leukemia-associated genes. Mol. Cell Biol. 26, 3902–3916 (2006).
pubmed: 16648484
pmcid: 1488994
doi: 10.1128/MCB.26.10.3902-3916.2006
Sun, Y. et al. HOXA9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell 34, 643–658.e645 (2018).
pubmed: 30270123
pmcid: 6179449
doi: 10.1016/j.ccell.2018.08.018
Yokoyama, T. et al. MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis. J. Clin. Invest. 126, 1664–1678 (2016).
pubmed: 27018596
pmcid: 4855920
doi: 10.1172/JCI81516
Argiropoulos, B., Yung, E. & Humphries, R. K. Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev. 21, 2845–2849 (2007).
pubmed: 18006680
doi: 10.1101/gad.1619407
Steinauer, N., Guo, C. & Zhang, J. Emerging roles of MTG16 in cell-fate control of hematopoietic stem cells and cancer. Stem Cells Int. 2017, 6301385 (2017).
pubmed: 29358956
pmcid: 5735743
doi: 10.1155/2017/6301385
Fischer, M. A., Moreno-Miralles, I., Hunt, A., Chyla, B. J. & Hiebert, S. W. Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence. EMBO J. 31, 1494–1505 (2012).
pubmed: 22266796
pmcid: 3321173
doi: 10.1038/emboj.2011.500
Denay, G., Vachon, G., Dumas, R., Zubieta, C. & Parcy, F. Plant SAM-domain proteins start to reveal their roles. Trends Plant Sci. 22, 718–725 (2017).
pubmed: 28668510
doi: 10.1016/j.tplants.2017.06.006
Johnson, P. E. & Donaldson, L. W. RNA recognition by the Vts1p SAM domain. Nat. Struct. Mol. Biol. 13, 177–178 (2006).
pubmed: 16429155
doi: 10.1038/nsmb1039
Rothe, B. et al. Bicc1 polymerization regulates the localization and silencing of bound mRNA. Mol. Cell Biol. 35, 3339–3353 (2015).
pubmed: 26217012
pmcid: 4561730
doi: 10.1128/MCB.00341-15
Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).
pubmed: 22412018
pmcid: 3308701
doi: 10.1083/jcb.201112098
Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).
pubmed: 23921808
pmcid: 3773500
doi: 10.1038/nmeth.2557
Sandoval, G. J. et al. Binding of TMPRSS2-ERG to BAF chromatin remodeling complexes mediates prostate oncogenesis. Mol. Cell 71, 554–566.e557 (2018).
pubmed: 30078722
pmcid: 6140332
doi: 10.1016/j.molcel.2018.06.040
Wang, G. G. et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat. Methods 3, 287–293 (2006).
pubmed: 16554834
doi: 10.1038/nmeth865
Wagner, F. F. et al. An isochemogenic set of inhibitors to define the therapeutic potential of histone deacetylases in beta-cell protection. ACS Chem. Biol. 11, 363–374 (2016).
pubmed: 26640968
doi: 10.1021/acschembio.5b00640
Long, J. et al. Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response. Leukemia 31, 2761–2770 (2017).
pubmed: 28462918
doi: 10.1038/leu.2017.130
Schmoellerl, J. et al. EVI1 drives leukemogenesis through aberrant ERG activation. Blood 141, 453–466 (2022).
doi: 10.1182/blood.2022016592
Leo, I. R. et al. Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines. Nat. Commun. 13, 1691 (2022).
pubmed: 35354797
pmcid: 8967900
doi: 10.1038/s41467-022-29224-5
Frismantas, V. et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 129, e26–e37 (2017).
pubmed: 28122742
pmcid: 5356455
doi: 10.1182/blood-2016-09-738070
Adamo, P. & Ladomery, M. R. The oncogene ERG: a key factor in prostate cancer. Oncogene 35, 403–414 (2016).
pubmed: 25915839
doi: 10.1038/onc.2015.109
Aqaqe, N. et al. An ERG enhancer-based reporter identifies leukemia cells with elevated leukemogenic potential driven by ERG-USP9X feed-forward regulation. Cancer Res. 79, 3862–3876 (2019).
pubmed: 31175119
doi: 10.1158/0008-5472.CAN-18-3215
Summers, A. R. et al. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J. Clin. Invest. 123, 3112–3123 (2013).
pubmed: 23921131
pmcid: 3696547
doi: 10.1172/JCI60806
Stadhouders, R. et al. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat. Commun. 6, 8893 (2015).
pubmed: 26593974
doi: 10.1038/ncomms9893
Guo, X., Plank-Bazinet, J., Krivega, I., Dale, R. K. & Dean, A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res. 48, 10226–10240 (2020).
pubmed: 32960220
pmcid: 7544236
doi: 10.1093/nar/gkaa736
Lausen, J., Cho, S., Liu, S. & Werner, M. H. The nuclear receptor co-repressor (N-CoR) utilizes repression domains I and III for interaction and co-repression with ETO. J. Biol. Chem. 279, 49281–49288 (2004).
pubmed: 15377655
doi: 10.1074/jbc.M407239200
Chng, K. R. et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J. 31, 2810–2823 (2012).
pubmed: 22531786
pmcid: 3380210
doi: 10.1038/emboj.2012.112
Bjorkman, M. et al. Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer. Int J. Cancer 123, 2774–2781 (2008).
pubmed: 18798265
doi: 10.1002/ijc.23885
Antoniani, C., Romano, O. & Miccio, A. Concise review: epigenetic regulation of hematopoiesis: biological insights and therapeutic applications. Stem Cells Transl. Med. 6, 2106–2114 (2017).
pubmed: 29080249
pmcid: 5702521
doi: 10.1002/sctm.17-0192
Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).
pubmed: 23473601
doi: 10.1016/j.molcel.2013.01.038
Lara-Astiaso, D. et al. Immunogenetics. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).
pubmed: 25103404
pmcid: 4412442
doi: 10.1126/science.1256271
Yu, X. et al. Chromatin dynamics during the differentiation of long-term hematopoietic stem cells to multipotent progenitors. Blood Adv. 1, 887–898 (2017).
pubmed: 29296732
pmcid: 5737588
doi: 10.1182/bloodadvances.2016003384
Thoms, J. A. I. et al. Disruption of a GATA2, TAL1, ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood 138, 1441–1455 (2021).
pubmed: 34075404
doi: 10.1182/blood.2020009707
Grimwade, D. et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116, 354–365 (2010).
pubmed: 20385793
doi: 10.1182/blood-2009-11-254441
Davis, J. N., McGhee, L. & Meyers, S. The ETO (MTG8) gene family. Gene 303, 1–10 (2003).
pubmed: 12559562
doi: 10.1016/S0378-1119(02)01172-1
Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S. & Liu, J. M. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl Acad. Sci. USA 95, 10860–10865 (1998).
pubmed: 9724795
pmcid: 27986
doi: 10.1073/pnas.95.18.10860
Meyers, S., Lenny, N. & Hiebert, S. W. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol. Cell Biol. 15, 1974–1982 (1995).
pubmed: 7891692
pmcid: 230424
doi: 10.1128/MCB.15.4.1974
Okuda, T. et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91, 3134–3143 (1998).
pubmed: 9558367
doi: 10.1182/blood.V91.9.3134
Yergeau, D. A. et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat. Genet. 15, 303–306 (1997).
pubmed: 9054947
doi: 10.1038/ng0397-303
Guo, C. et al. Histone deacetylase 3 preferentially binds and collaborates with the transcription factor RUNX1 to repress AML1-ETO-dependent transcription in t(8;21) AML. J. Biol. Chem. 295, 4212–4223 (2020).
pubmed: 32071087
pmcid: 7105303
doi: 10.1074/jbc.RA119.010707
Agrawal-Singh, S. et al. HOXA9 forms a repressive complex with nuclear matrix-associated protein SAFB to maintain acute myeloid leukemia. Blood 141, 1737–1754 (2023).
pubmed: 36577137
doi: 10.1182/blood.2022016528
Richon, V. M. et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl Acad. Sci. USA 95, 3003–3007 (1998).
pubmed: 9501205
pmcid: 19684
doi: 10.1073/pnas.95.6.3003
Quintas-Cardama, A., Santos, F. P. & Garcia-Manero, G. Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia 25, 226–235 (2011).
pubmed: 21116282
doi: 10.1038/leu.2010.276
Garcia-Manero, G. et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111, 1060–1066 (2008).
pubmed: 17962510
doi: 10.1182/blood-2007-06-098061
Kuendgen, A. et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 106, 112–119 (2006).
pubmed: 16323176
doi: 10.1002/cncr.21552
Amendola, M., Venneri, M. A., Biffi, A., Vigna, E. & Naldini, L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat. Biotechnol. 23, 108–116 (2005).
pubmed: 15619618
doi: 10.1038/nbt1049
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463
pmcid: 3339379
doi: 10.1089/omi.2011.0118
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).
pubmed: 31066453
pmcid: 6602461
doi: 10.1093/nar/gkz369
Akalin, A., Franke, V., Vlahovicek, K., Mason, C. E. & Schubeler, D. Genomation: a toolkit to summarize, annotate and visualize genomic intervals. Bioinformatics 31, 1127–1129 (2015).
pubmed: 25417204
doi: 10.1093/bioinformatics/btu775
Coyaud, E. et al. BioID-based Identification of Skp Cullin F-box (SCF)beta-TrCP1/2 E3 Ligase Substrates. Mol. Cell. Proteomics 14, 1781–1795 (2015).
Craig, R. & Beavis, R. C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).
Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).