Effects of salinity on methane emissions and methanogenic archaeal communities in different habitat of saline-alkali wetlands.

CH4 emissions Habitat Inland saline-alkaline wetlands Methanogenic archaea Salinity

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 15 04 2023
accepted: 13 09 2023
medline: 23 10 2023
pubmed: 20 9 2023
entrez: 20 9 2023
Statut: ppublish

Résumé

The increase in temperature caused by global climate change has promoted the salinization of wetlands. Inland saline-alkaline wetlands have an environment of over-humidity and shallow water and are hot spots for CH

Identifiants

pubmed: 37728677
doi: 10.1007/s11356-023-29922-7
pii: 10.1007/s11356-023-29922-7
doi:

Substances chimiques

Methane OP0UW79H66
Soil 0
Carbon Dioxide 142M471B3J

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

106378-106389

Subventions

Organisme : the National Natural Science Foundation of China
ID : 31971468

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Alves KJ, Pylro VS, Nakayama CR, Vital VG, Taketani RG, Santos DG, Rodrigues JLM, Tsai SM, Andreote FD (2022) Methanogenic communities and methane emissions from enrichments of Brazilian Amazonia soils under land-use change. Microbiol Res 265:127178. https://doi.org/10.1016/j.micres.2022.127178
doi: 10.1016/j.micres.2022.127178
Borrel G, Parisot N, Harris H, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC genomics 15(1):1–24. https://doi.org/10.1186/1471-2164-15-679
doi: 10.1186/1471-2164-15-679
Bräuer SL, Basiliko N, Siljanen HMP, Zinder SH (2020) Methanogenic archaea in peatlands. FEMS Microbiol Lett 367(20):fnaa172. https://doi.org/10.1093/femsle/fnaa172
doi: 10.1093/femsle/fnaa172
Bridgham SD, Cadillo Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19(5):1325–1346. https://doi.org/10.1111/gcb.12131
doi: 10.1111/gcb.12131
Cai P, Ning Z, Zhang N, Zhang M, Guo C, Niu M, Shi J (2019) Insights into biodegradation related metabolism in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer by metagenomics analysis. Microorganisms 7(10):412. https://doi.org/10.3390/microorganisms7100412
doi: 10.3390/microorganisms7100412
Chambers LG, Guevara R, Boyer JN, Troxler TG, Davis SE (2016) Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands 36:361–371. https://doi.org/10.1007/s13157-016-0745-8
doi: 10.1007/s13157-016-0745-8
Chambers LG, Reddy KR, Osborne TZ (2011) Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Sci Soc Am J 75(5):2000–2007. https://doi.org/10.2136/sssaj2011.0026
doi: 10.2136/sssaj2011.0026
Chen C, Hall SJ, Coward E, Thompson A (2020a) Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat Commun 11(1):2255. https://doi.org/10.1038/s41467-020-16071-5
doi: 10.1038/s41467-020-16071-5
Chen F, Zheng Y, Hou L, Niu Y, Gao D, An Z, Zhou J, Yin G, Dong H, Han P (2021) Microbial abundance and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in estuarine and intertidal wetlands: heterogeneity and driving factors. Water Res 190:116737. https://doi.org/10.1016/j.watres.2020.116737
doi: 10.1016/j.watres.2020.116737
Chen L, Li L, Zhang S, Zhang W, Xue K, Wang Y, Dong X (2022) Anaerobic methane oxidation linked to Fe(III) reduction in a Candidatus Methanoperedens-enriched consortium from the cold Zoige wetland at Tibetan Plateau. Environ Microbiol 24(2):614–625. https://doi.org/10.1111/1462-2920.15848
doi: 10.1111/1462-2920.15848
Chen S, Wang P, Liu H, Xie W, Wan XS, Kao SJ, Phelps TJ, Zhang C (2020b) Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism. Appl Microbiol Biotechnol 104:1331–1346. https://doi.org/10.1007/s00253-019-10221-6
doi: 10.1007/s00253-019-10221-6
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560
doi: 10.1093/bioinformatics/bty560
Cui H, Su X, Chen F, Holland M, Yang S, Liang J, Su P, Dong H, Hou W (2019) Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. Mar Environ Res 144:230–239. https://doi.org/10.1016/j.marenvres.2019.01.009
doi: 10.1016/j.marenvres.2019.01.009
Dang C, Morrissey EM, Neubauer SC, Franklin RB (2019) Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands. Glob Change Biol 25(2):549–561. https://doi.org/10.1111/gcb.14486
doi: 10.1111/gcb.14486
Duan B, Cai T, Man X, Xiao R, Gao M, Ge Z, Mencuccini M (2022) Different variations in soil CO
doi: 10.1016/j.scitotenv.2022.155983
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604
doi: 10.1038/nmeth.2604
Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci 113(45):12792–12796. https://doi.org/10.1073/pnas.1609534113
doi: 10.1073/pnas.1609534113
Fan L, Schneider D, Dippold MA, Poehlein A, Wu W, Gui H, Ge T, Wu J, Thiel V, Kuzyakov Y (2021) Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biol Biochem 156:108215. https://doi.org/10.1016/j.soilbio.2021.108215
doi: 10.1016/j.soilbio.2021.108215
Feng L, Zhang Z, Yang G, Wu G, Yang Q, Chen Q (2023) Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. Environ Res 225:115590. https://doi.org/10.1016/j.envres.2023.115590
doi: 10.1016/j.envres.2023.115590
Fillol M, Auguet JC, Casamayor EO, Borrego CM (2016) Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J 10(3):665–677. https://doi.org/10.1038/ismej.2015.143
doi: 10.1038/ismej.2015.143
Gao D, Liu F, Xie Y, Liang H (2018) Temporal and spatial distribution of ammonia-oxidizing organisms of two types of wetlands in Northeast China. Appl Microbiol Biotechnol 102(16):7195–7205. https://doi.org/10.1007/s00253-018-9152-9
doi: 10.1007/s00253-018-9152-9
Gütlein A, Gerschlauer F, Kikoti I, Kiese R (2018) Impacts of climate and land use on N
doi: 10.1111/gcb.13944
Haese RR, Wallmann K, Dahmke A, Kretzmann U, Müller PJ, Schulz HD (1997) Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochim Cosmochim Acta 61(1):63–72. https://doi.org/10.1016/S0016-7037(96)00312-2
doi: 10.1016/S0016-7037(96)00312-2
Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, Hopfensperger KN, Lamers LPM, Gell P (2015) A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6(10):1–43. https://doi.org/10.1890/es14-00534.1
doi: 10.1890/es14-00534.1
Hofmann K, Praeg N, Mutschlechner M, Wagner AO, Illmer P (2016) Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiol Ecol 92(2):fiv171. https://doi.org/10.1093/femsec/fiv171
doi: 10.1093/femsec/fiv171
IPCC (2021) Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL (eds) The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ . Accessed 20 March 2023
Jeppesen E, Beklioğlu M, Özkan K, Akyürek Z (2020) Salinization increase due to climate change will have substantial negative effects on inland waters: a call for multifaceted research at the local and global scale. The Innovation 1(2):100030. https://doi.org/10.1016/j.xinn.2020.100030
doi: 10.1016/j.xinn.2020.100030
Jiang M, Xu P, Wu L, Zhao J, Wu H, Lin S, Yang T, Tu J, Hu R (2022) Methane emission, methanogenic and methanotrophic communities during rice-growing seasons differ in diversified rice rotation systems. Sci Total Environ 842:156781. https://doi.org/10.1016/j.scitotenv.2022.156781
doi: 10.1016/j.scitotenv.2022.156781
Kallistova A, Merkel A, Kanapatskiy T, Boltyanskaya Y, Tarnovetskii I, Perevalova A, Kevbrin V, Samylina O, Pimenov N (2020) Methanogenesis in the Lake Elton saline aquatic system. Extremophiles 24:657–672. https://doi.org/10.1007/s00792-020-01185-x
doi: 10.1007/s00792-020-01185-x
Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823. https://doi.org/10.1038/ngeo1955
doi: 10.1038/ngeo1955
Kong D, Li S, Jin Y, Wu S, Chen J, Hu T, Wang H, Liu S, Zou J (2019) Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies. Geoderma 347:233–243. https://doi.org/10.1016/j.geoderma.2019.04.008
doi: 10.1016/j.geoderma.2019.04.008
Konnerup D, Betancourt Portela JM, Villamil C, Parra JP (2014) Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta, Colombia. Estuar Coastal Shelf Sci 140:43–51. https://doi.org/10.1016/j.ecss.2014.01.006
doi: 10.1016/j.ecss.2014.01.006
Krauss KW, Whitbeck JL (2012) Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA). Wetlands 32:73–81. https://doi.org/10.1007/s13157-011-0246-8
doi: 10.1007/s13157-011-0246-8
Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19(4):409–421. https://doi.org/10.1016/s1002-0160(09)00003-4
doi: 10.1016/s1002-0160(09)00003-4
Lan X, KW Thoning, EJ Dlugokencky (2022) Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2023-03. Global Monitoring Laboratory. https://doi.org/10.15138/P8XG-AA10
Lew S, Glińska Lewczuk K (2018) Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes. Sci Total Environ 645:1201–1211. https://doi.org/10.1016/j.scitotenv.2018.07.141
doi: 10.1016/j.scitotenv.2018.07.141
Liu C, Li H, Zhang Y, Si D, Chen Q (2016) Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresource Technol 216:87–94. https://doi.org/10.1016/j.biortech.2016.05.048
doi: 10.1016/j.biortech.2016.05.048
Liu F, Zhang Y, Liang H, Gao D (2019) Long-term harvesting of reeds affects greenhouse gas emissions and microbial functional genes in alkaline wetlands. Water Res 164:114936. https://doi.org/10.1016/j.watres.2019.114936
doi: 10.1016/j.watres.2019.114936
Lu Y, Liu Q, Fu L, Hu Y, Zhong L, Zhang S, Liu Q, Xie Q (2022) The effect of modified biochar on methane emission and succession of methanogenic archaeal community in paddy soil. Chemosphere 304:135288. https://doi.org/10.1016/j.chemosphere.2022.135288
doi: 10.1016/j.chemosphere.2022.135288
Luo D, Li Y, Yao H, Chapman SJ (2022) Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil. Sci Total Environ 823:153636. https://doi.org/10.1016/j.scitotenv.2022.153636
doi: 10.1016/j.scitotenv.2022.153636
Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Curr Biol 28(13):R727–R732. https://doi.org/10.1016/j.cub.2018.05.021
doi: 10.1016/j.cub.2018.05.021
Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507
doi: 10.1093/bioinformatics/btr507
Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ 572:874–896. https://doi.org/10.1016/j.scitotenv.2016.07.182
doi: 10.1016/j.scitotenv.2016.07.182
Moberly JG, Bernards MT, Waynant KV (2018) Key features and updates for origin 2018. J Cheminfom 10:1–2. https://doi.org/10.1186/s13321-018-0259-x
doi: 10.1186/s13321-018-0259-x
Morgan GA, Barrett KC, Leech NL, Gloeckner GW (2019) IBM SPSS for introductory statistics: use and interpretation. Routledge Press, UK
doi: 10.4324/9780429287657
Mori K, Harayama S (2011) Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. International Journal of Systematic and Evolutionary Microbiology 61(1):138–143. https://doi.org/10.1099/ijs.0.022723-0
doi: 10.1099/ijs.0.022723-0
Mori K, Iino T, Suzuki KI, Yamaguchi K, Kamagata Y (2012) Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Appl Environ Microb 78(9):3416–3423. https://doi.org/10.1128/aem.07484-11
doi: 10.1128/aem.07484-11
Nakagawa F, Yoshida N, Nojiri Y, Makarov V (2002) Production of methane from alasses in eastern Siberia: implications from its
doi: 10.1029/2000gb001384
Pattnaik P, Mishra SR, Bharati K, Mohanty SR, Sethunathan N, Adhya TK (2000) Influence of salinity on methanogenesis and associated microflora in tropical rice soils. Microbiol Res 155(3):215–220. https://doi.org/10.1016/s0944-5013(00)80035-x
doi: 10.1016/s0944-5013(00)80035-x
Qiu S, Zhang X, Xia W, Li Z, Wang L, Chen Z, Ge S (2023) Effect of extreme pH conditions on methanogenesis: methanogen metabolism and community structure. Sci Total Environ 877:162702. https://doi.org/10.1016/j.scitotenv.2023.162702
doi: 10.1016/j.scitotenv.2023.162702
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219
doi: 10.1093/nar/gks1219
Rao Y, Wan J, Liu Y, Angelidaki I, Zhang S, Zhang Y, Luo G (2018) A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge. Water Res 139:372–380. https://doi.org/10.1016/j.watres.2018.04.026
doi: 10.1016/j.watres.2018.04.026
Rath KM, Fierer N, Murphy DV, Rousk J (2019) Linking bacterial community composition to soil salinity along environmental gradients. ISME J 13(3):836–846. https://doi.org/10.1038/s41396-018-0313-8
doi: 10.1038/s41396-018-0313-8
Romano RG, Bendia AG, Moreira JCF, Franco DC, Signori CN, Yu T, Wang F, Jovane L, Pellizari VH (2021) Bathyarchaeia occurrence in rich methane sediments from a Brazilian ría. Estuar Coastal Shelf Sci 263:107631. https://doi.org/10.1016/j.ecss.2021.107631
doi: 10.1016/j.ecss.2021.107631
Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge university press, UK
doi: 10.1017/CBO9781139627061
Söllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T (2016) Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92(1):fiv149. https://doi.org/10.1093/femsec/fiv149
doi: 10.1093/femsec/fiv149
Ström L, Ekberg A, Mastepanov M, Røjle Christensen T (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9(8):1185–1192. https://doi.org/10.1046/j.1365-2486.2003.00655.x
doi: 10.1046/j.1365-2486.2003.00655.x
Sun Z, Jiang H, Wang L, Mou X, Sun W (2013) Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant Soil 369:317–333. https://doi.org/10.1007/s11104-012-1564-1
doi: 10.1007/s11104-012-1564-1
Venturini AM, Dias NMS, Gontijo JB, Yoshiura CA, Paula FS, Meyer KM, Nakamura FM, da França AG, Borges CD, Barlow J (2022) Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. Environ Res 212:113139. https://doi.org/10.1016/j.envres.2022.113139
doi: 10.1016/j.envres.2022.113139
Wallmann K, Hennies K, König I, Petersen Wand Knauth HD (1993) New procedure for determining reactive Fe(III) and Fe(II) minerals in sediments. Limnol Oceanogr 38(8):1803–1812. https://doi.org/10.4319/lo.1993.38.8.1803
doi: 10.4319/lo.1993.38.8.1803
Wang J, Cai C, Li Y, Hua M, Wang J, Yang H, Zheng P, Hu B (2018) Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone. Environ Sci Technol 53(1):203–212. https://doi.org/10.1021/acs.est.8b05742
doi: 10.1021/acs.est.8b05742
Wang W, Liang H, Li F, Su H, Li H, Gao D (2023) Water level of inland saline wetlands with implications for CO
doi: 10.1007/s11356-023-25862-4
Wang Y, Hu Z, Shen L, Liu C, Islam ARMT, Wu Z, Dang H, Chen S (2021) The process of methanogenesis in paddy fields under different elevated CO
doi: 10.1016/j.scitotenv.2021.145629
Weston NB, Vile MA, Neubauer SC, Velinsky DJ (2011) Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102:135–151. https://doi.org/10.1007/s10533-010-9427-4
doi: 10.1007/s10533-010-9427-4
Wilson BJ, Mortazavi B, Kiene RP (2015) Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry 123:329–347. https://doi.org/10.1007/s10533-015-0085-4
doi: 10.1007/s10533-015-0085-4
Wu J, Wang M, Li P, Shen L, Ma M, Xu B, Zhang S, Sha C, Ye C, Xiong L (2022) Effects of pig manure and its organic fertilizer application on archaea and methane emission in paddy fields. Land 11(4):499. https://doi.org/10.3390/land11040499
doi: 10.3390/land11040499
Youngblut ND, Wirth JS, Henriksen JR, Smith M, Simon H, Metcalf WW, Whitaker RJ (2015) Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment. ISME J 9(10):2191–2205. https://doi.org/10.1038/ismej.2015.31
doi: 10.1038/ismej.2015.31
Yuan J, Yuan Y, Zhu Y, Cao L (2018a) Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil. Sci Total Environ 627:770–781. https://doi.org/10.1016/j.scitotenv.2018.01.233
doi: 10.1016/j.scitotenv.2018.01.233
Yuan Q, Hernández M, Dumont MG, Rui J, Scavino AF, Conrad R (2018b) Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biol Biochem 116:99–109. https://doi.org/10.1016/j.soilbio.2017.10.004
doi: 10.1016/j.soilbio.2017.10.004
Zhang K, Shi Y, Cui X, Yue P, Li K, Liu X, Tripathi Binu M, Chu H (2019) Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4(1):e00225. https://doi.org/10.1128/mSystems.00225-18
doi: 10.1128/mSystems.00225-18
Zhang W, Sheng R, Zhang M, Xiong G, Hou H, Li S, Wei W (2018) Effects of continuous manure application on methanogenic and methanotrophic communities and methane production potentials in rice paddy soil. Agric Ecosyst Environ 258:121–128. https://doi.org/10.1016/j.agee.2018.02.018
doi: 10.1016/j.agee.2018.02.018
Zhang Z, Yang Z, Yue H, Xiao M, Ge T, Li Y, Yu Y, Yao H (2023) Discrepant impact of polyethylene microplastics on methane emissions from different paddy soils. Appl Soil Ecol 181:104650. https://doi.org/10.1016/j.apsoil.2022.104650
doi: 10.1016/j.apsoil.2022.104650

Auteurs

Feng Li (F)

Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Huiju Li (H)

Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Huihui Su (H)

Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Wei Du (W)

Heilongjiang Zhalong National Natural Reserve Administrative Bureau, Qiqihar, 161002, Heilongjiang, China.

Zhongyan Gao (Z)

Heilongjiang Zhalong National Natural Reserve Administrative Bureau, Qiqihar, 161002, Heilongjiang, China.

Huajun Liu (H)

Heilongjiang Zhalong National Natural Reserve Administrative Bureau, Qiqihar, 161002, Heilongjiang, China.

Hong Liang (H)

Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Dawen Gao (D)

Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China. gaodawen@bucea.edu.cn.
Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China. gaodawen@bucea.edu.cn.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Populus Soil Microbiology Soil Microbiota Fungi
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH