Probiotic potential of Bacillus Isolates from Polish Bee Pollen and Bee Bread.

Bacillus Bee bread Bee pollen Probiotic

Journal

Probiotics and antimicrobial proteins
ISSN: 1867-1314
Titre abrégé: Probiotics Antimicrob Proteins
Pays: United States
ID NLM: 101484100

Informations de publication

Date de publication:
19 Sep 2023
Historique:
accepted: 12 09 2023
medline: 19 9 2023
pubmed: 19 9 2023
entrez: 19 9 2023
Statut: aheadofprint

Résumé

The main goal of this study was the evaluation of the probiotic potential of 10 Bacillus spp. strains isolated from 5 bee bread and 3 bee pollen samples. The antagonistic interaction with Staphylococcus aureus and Escherichia coli was a primary criterion for the preliminary selection of the isolates. Three out of ten strains-PY2.3 (isolated from pollen), BP20.15 and BB10.1 (both isolated from bee bread)-were found to be possible probiotic strains. All these strains are safe for humans (exhibiting [Formula: see text]-hemolytic activity) and meet all essential requirements for probiotics in terms of viability in the presence of bile salts and acid conditions, hydrophobicity, auto-aggregation, and co-aggregation with the cells of important human pathogenic bacteria. They also assimilate more than 30% of cholesterol after 24 h of incubation. These three isolates are resistant to penicillin but sensitive (or exhibit moderate resistance) to the other nine antibiotics tested herein. On the basis of whole-genome sequencing, BP20.15 and BB10.1 were classified as B. subtilis and PY2.3 as B. velezensis. Moreover, genomic analyses revealed that all these isolates are potential producers of different antimicrobial compounds, including bacteriocins and secondary metabolites. The outcomes of this study have proven that some of the Bacillus strains isolated from bee pollen or bee bread are potential probiotics.

Identifiants

pubmed: 37725304
doi: 10.1007/s12602-023-10157-4
pii: 10.1007/s12602-023-10157-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Pełka K, Otłowska O, Worobo RW, Szweda P (2021) Bee bread exhibits higher antimicrobial potential compared to bee pollen. Antibiot (Basel, Switzerland) 10:1–14. https://doi.org/10.3390/ANTIBIOTICS10020125
doi: 10.3390/ANTIBIOTICS10020125
Didaras NA, Karatasou K, Dimitriou TG et al (2020) Antimicrobial activity of bee-collected pollen and beebread: state of the art and future perspectives. Antibiot (9):811. https://doi.org/10.3390/ANTIBIOTICS9110811
Didaras NA, Kafantaris I, Dimitriou TG et al (2021) Biological properties of bee bread collected from apiaries located across Greece. Antibiot (Basel, Switzerland) 10. https://doi.org/10.3390/ANTIBIOTICS10050555
Kostić A, Milinčić DD, Barać MB et al (2020) The application of pollen as a functional food and feed ingredient-the present and perspectives. Biomolecules 10. https://doi.org/10.3390/BIOM10010084
Fatrcová-Šramková K, Nôžková J, Máriássyová M, Kačániová M (2016) Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. J Environ Sci Health B 51:176–181. https://doi.org/10.1080/03601234.2015.1108811
doi: 10.1080/03601234.2015.1108811 pubmed: 26674447
Komosinska-Vassev K, Olczyk P, Kaźmierczak J et al (2015) Bee pollen: chemical composition and therapeutic application. Evid Based Complement Alternat Med 2015. https://doi.org/10.1155/2015/297425
Casteel DB (2022) The behavior of the honey bee in pollen collecting. DigiCat
Fan TF, Park S, Shi Q et al (2020) Transformation of hard pollen into soft matter. Nat Commun 11. https://doi.org/10.1038/s41467-020-15294-w
Tomás A, Falcão SI, Russo-Almeida P, Vilas-Boas M (2017) Potentialities of beebread as a food supplement and source of nutraceuticals: botanical origin, nutritional composition and antioxidant activity. J Apic Res 56:219–230
doi: 10.1080/00218839.2017.1294526
Kieliszek M, Piwowarek K, Kot AM et al (2018) Pollen and bee bread as new health-oriented products: a review. Trends Food Sci Technol 71:170–180. https://doi.org/10.1016/J.TIFS.2017.10.021
doi: 10.1016/J.TIFS.2017.10.021
Pełka K, Bucekova M, Godocikova J et al (2022) Glucose oxidase as an important yet overlooked factor determining the antibacterial activity of bee pollen and bee bread. Eur Food Res Technol 248:2929–2939. https://doi.org/10.1007/S00217-022-04101-Z/FIGURES/5
doi: 10.1007/S00217-022-04101-Z/FIGURES/5
Pełka K, Worobo RW, Walkusz J, Szweda P (2021) Bee pollen and bee bread as a source of bacteria producing antimicrobials. Antibiot (Basel, Switzerland) 10. https://doi.org/10.3390/ANTIBIOTICS10060713
Vásquez A, Olofsson TC (2015) The lactic acid bacteria involved in the production of bee pollen and bee bread. 103896/IBRA148307 48:189–195. https://doi.org/10.3896/IBRA.1.48.3.07
GILLIAM M, (1979) Microbiology of pollen and bee bread : the yeasts. Apidologie 10:43–53. https://doi.org/10.1051/APIDO:19790106
doi: 10.1051/APIDO:19790106
GILLIAM M, (1979) Microbiology of pollen and bee bread : the genus Bacillus. Apidologie 10:269–274. https://doi.org/10.1051/apido:19790304
doi: 10.1051/apido:19790304
Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1–10. https://doi.org/10.1111/J.1574-6968.1997.TB12678.X
doi: 10.1111/J.1574-6968.1997.TB12678.X
Gilliam M, Taber S, Lorenz BJ, Prest DB (1988) Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. J Invertebr Pathol 52:314–325. https://doi.org/10.1016/0022-2011(88)90141-3
doi: 10.1016/0022-2011(88)90141-3
Pajor M, Worobo RW, Milewski S, Szweda P (2018) The antimicrobial potential of bacteria isolated from honey samples produced in the apiaries located in Pomeranian Voivodeship in Northern Poland. Int J Environ Res Public Health 15. https://doi.org/10.3390/IJERPH15092002
Jeżewska-Frąckowiak J, Seroczyńska K, Banaszczyk J et al (2018) The promises and risks of probiotic Bacillus species. Acta Biochim Pol 65:509–519
pubmed: 30521647
Sabaté DC, Cruz MS, Benítez-Ahrendts MR, Audisio MC (2012) Beneficial effects of Bacillus subtilis subsp. subtilis Mori2, a honey-associated strain, on honeybee colony performance. Probiotics Antimicrob Proteins 4:39–46. https://doi.org/10.1007/S12602-011-9089-0
doi: 10.1007/S12602-011-9089-0 pubmed: 26781735
Zulkhairi Amin FA, Sabri S, Ismail M et al (2019) Probiotic properties of Bacillus strains isolated from stingless bee ( Heterotrigona itama) honey collected across Malaysia. Int J Environ Res Public Health 17. https://doi.org/10.3390/IJERPH17010278
Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118. https://doi.org/10.1126/SCIENCE.1058709
doi: 10.1126/SCIENCE.1058709 pubmed: 11352068
Bull MJ, Plummer NT (2014) Part 1: The human gut microbiome in health and disease. Integr Med A Clin J 13:17
WHO F and AO of the UN (FAO) WHO (2006) Probiotics in food : health and nutritional properties and guidelines for evaluation. Food Nutr 85:1–56
Lee NK, Kim WS, Paik HD (2019) Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 28:1297–1305. https://doi.org/10.1007/S10068-019-00691-9
doi: 10.1007/S10068-019-00691-9 pubmed: 31695928 pmcid: 6811671
Toutiaee S, Mojgani N, Harzandi N et al (2022) In vitro probiotic and safety attributes of Bacillus spp. isolated from beebread, honey samples and digestive tract of honeybees Apis mellifera. Lett Appl Microbiol 74:656–665. https://doi.org/10.1111/LAM.13650
doi: 10.1111/LAM.13650 pubmed: 35000212
Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N (2020) Probiotic properties of bacteria isolated from bee bread of stingless bee Heterotrigona itama. https://doi.org/10.1080/00218839.2020.1801152
Jeon HL, Lee NK, Yang SJ et al (2017) Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci Biotechnol 26:1641–1648. https://doi.org/10.1007/S10068-017-0148-5
doi: 10.1007/S10068-017-0148-5 pubmed: 30263701 pmcid: 6049726
Yadav R, Puniya AK, Shukla P (2016) Probiotic properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Front Microbiol 7. https://doi.org/10.3389/FMICB.2016.01683
Weinstein MP, Patel JB, Bobenchik AM et al (2020) M100 performance standards for antimicrobial susceptibility testing A CLSI supplement for global application. Performance Standards for Antimicrobial Susceptibility Testing Performance Standards for Antimicrobial Susceptibility Testing
Tomaro-Duchesneau C, Jones ML, Shah D et al (2014) Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed Res Int. https://doi.org/10.1155/2014/380316
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170
doi: 10.1093/BIOINFORMATICS/BTU170 pubmed: 24695404 pmcid: 4103590
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086
doi: 10.1093/BIOINFORMATICS/BTT086 pubmed: 23422339 pmcid: 3624806
Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760
doi: 10.1099/ijsem.0.000760 pubmed: 26585518
Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/GR.2289704
doi: 10.1101/GR.2289704 pubmed: 15231754 pmcid: 442156
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/BIOINFORMATICS/BTU153
doi: 10.1093/BIOINFORMATICS/BTU153 pubmed: 24642063
Tatusova T, Dicuccio M, Badretdin A et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/NAR/GKW569
doi: 10.1093/NAR/GKW569 pubmed: 27342282 pmcid: 5001611
Meier-Kolthoff JP (2019) Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 101(10):1–10. https://doi.org/10.1038/s41467-019-10210-3
doi: 10.1038/s41467-019-10210-3
Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/MOLBEV/MSV150
doi: 10.1093/MOLBEV/MSV150 pubmed: 26130081 pmcid: 4576710
Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/NAR/GKAB301
doi: 10.1093/NAR/GKAB301 pubmed: 33885785 pmcid: 8265157
Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/IJS.0.64483-0
doi: 10.1099/IJS.0.64483-0 pubmed: 17220447
Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. https://doi.org/10.1073/PNAS.0906412106
doi: 10.1073/PNAS.0906412106 pubmed: 19855009 pmcid: 2776425
Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668
doi: 10.1086/282802
Disayathanoowat T, Li H, Supapimon N et al (2020) Different dynamics of bacterial and fungal communities in hive-stored bee bread and their possible roles: a case study from two commercial honey bees in China. Microorganisms 8. https://doi.org/10.3390/MICROORGANISMS8020264
Prasad J, Gill H, Smart J, Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8:993–1002. https://doi.org/10.1016/S0958-6946(99)00024-2
doi: 10.1016/S0958-6946(99)00024-2
Isenring J, Geirnaert A, Lacroix C, Stevens MJA (2021) Bistable auto-aggregation phenotype in Lactiplantibacillus plantarum emerges after cultivation in in vitro colonic microbiota. BMC Microbiol 21. https://doi.org/10.1186/S12866-021-02331-X
Nithya V, Halami PM (2013) Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Ann Microbiol 63:129–137. https://doi.org/10.1007/S13213-012-0453-4/FIGURES/4
doi: 10.1007/S13213-012-0453-4/FIGURES/4
Barbuddhe SB, Chakraborty T (2009) Listeria as an enteroinvasive gastrointestinal pathogen. Curr Top Microbiol Immunol 337:173–195. https://doi.org/10.1007/978-3-642-01846-6_6
doi: 10.1007/978-3-642-01846-6_6 pubmed: 19812983
Manson JE, Tosteson H, Ridker PM et al (2010). The primary prevention of myocardial infarction. https://doi.org/10.1056/NEJM199205213262107
doi: 10.1056/NEJM199205213262107
Ranjha MMAN, Shafique B, Batool M et al (2021) Nutritional and health potential of probiotics: a review. Appl Sci 11:11204. https://doi.org/10.3390/app112311204
doi: 10.3390/app112311204
Aggarwal J, Swami G, Kumar M (2013) Probiotics and their effects on metabolic diseases: an update. J Clin Diagnostic Res 7:173–177. https://doi.org/10.7860/JCDR/2012/5004.2701
doi: 10.7860/JCDR/2012/5004.2701
Khalid F, Khalid A, Fu Y et al (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 59:627–633. https://doi.org/10.1007/S12275-021-1161-1
doi: 10.1007/S12275-021-1161-1 pubmed: 34212287
Zhu XH, Zhang S, Zhou L et al (2021) Probiotic potential of Bacillus velezensis: antimicrobial activity against non-O1 Vibrio cholerae and immune enhancement effects on Macrobrachium nipponense. Aquaculture 541:736817. https://doi.org/10.1016/J.AQUACULTURE.2021.736817
Wang J, Zhang D, Wang Y et al (2021) Probiotic effects of the Bacillus velezensis GY65 strain in the mandarin fish, Siniperca chuatsi. Aquac Reports 21:100902. https://doi.org/10.1016/J.AQREP.2021.100902
Mazkour S, Shekarforoush SS, Basiri S (2019) The effects of supplementation of Bacillus subtilis and Bacillus coagulans spores on the intestinal microflora and growth performance in rat. Iran J Microbiol 11:260. https://doi.org/10.18502/ijm.v11i3.1336
Mazhar S, Khokhlova E, Colom J et al (2023) In vitro and in silico assessment of probiotic and functional properties of Bacillus subtilis DE111®. Front Microbiol 13. https://doi.org/10.3389/FMICB.2022.1101144/FULL

Auteurs

Karolina Pełka (K)

Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland.

Ahmer Bin Hafeez (AB)

Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland.

Randy W Worobo (RW)

Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.

Piotr Szweda (P)

Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland. piotr.szweda@pg.edu.pl.

Classifications MeSH