How do intentions modulate the effect of working memory on long-term memory?
Intention
Long-term memory
Reward
Working memory
Journal
Psychonomic bulletin & review
ISSN: 1531-5320
Titre abrégé: Psychon Bull Rev
Pays: United States
ID NLM: 9502924
Informations de publication
Date de publication:
18 Sep 2023
18 Sep 2023
Historique:
accepted:
31
08
2023
pubmed:
19
9
2023
medline:
19
9
2023
entrez:
18
9
2023
Statut:
aheadofprint
Résumé
Previous studies found that working memory maintenance contributes to long-term memory formation, and some evidence suggests that this effect could be larger when individuals are informed of the final long-term memory test. However, no study so far has explored whether and how working memory maintenance adapts when long-term retention is intentional. In this study, we conducted two experiments using verbal complex span tasks followed by delayed-recall tests. In both experiments, we evaluated working memory maintenance by varying the cognitive load of the concurrent task and with memory strategies reports. We manipulated intentions to remember at long term by warning participants of the final delayed recall or not (Experiment 1) or by monetarily rewarding immediate or delayed-recall performance (Experiment 2). We found no evidence that intentions changed the working memory maintenance mechanisms and strategies used, yet the cognitive load (Experiment 1) and rewards (Experiment 2) effects on delayed recalls were increased with a higher intention to remember at long term. We discuss possible interpretations for these results and suggest that the effect of intentions may not be due to a change in the kind of maintenance mechanisms used. As our results cannot be explained solely by encoding or maintenance processes, we instead propose that intentions produce a combined change in encoding and maintenance. However, the exact nature of this modulation will need further investigation. We conclude that understanding how intentions modulate the effect of working memory on long-term memory could shed new light on their relationship.
Identifiants
pubmed: 37723335
doi: 10.3758/s13423-023-02381-4
pii: 10.3758/s13423-023-02381-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-11-IDEX-0007
Organisme : Agence Nationale de la Recherche
ID : ANR-11-LABX-0042
Organisme : Agence Nationale de la Recherche
ID : ANR-18-CE28-0012
Informations de copyright
© 2023. The Psychonomic Society, Inc.
Références
Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–517. https://doi.org/10.1016/j.neuron.2006.03.036
doi: 10.1016/j.neuron.2006.03.036
pubmed: 16675403
Addante, R. J., Watrous, A. J., Yonelinas, A. P., Ekstrom, A. D., & Ranganath, C. (2011). Prestimulus theta activity predicts correct source memory retrieval. Proceedings of the National Academy of Sciences, 108(26), 10702–10707. https://doi.org/10.1073/pnas.1014528108
doi: 10.1073/pnas.1014528108
Addante, R. J., de Chastelaine, M., & Rugg, M. D. (2015). Pre-stimulus neural activity predicts successful encoding of inter-item associations. NeuroImage, 105, 21–31. https://doi.org/10.1016/j.neuroimage.2014.10.046
doi: 10.1016/j.neuroimage.2014.10.046
pubmed: 25450109
Allen, R. J., & Ueno, T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention, Perception, & Psychophysics, 80(7), 1731–1743. https://doi.org/10.3758/s13414-018-1543-6
doi: 10.3758/s13414-018-1543-6
Atkinson, A. L., Allen, R. J., Baddeley, A. D., Hitch, G. J., & Waterman, A. H. (2021). Can valuable information be prioritized in verbal working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(5), 747–764. https://doi.org/10.1037/xlm0000979
doi: 10.1037/xlm0000979
pubmed: 33136420
Atkinson, A. L., Oberauer, K., Allen, R. J., & Souza, A. S. (2022). Why does the probe value effect emerge in working memory? Examining the biased attentional refreshing account. Psychonomic Bulletin & Review, 29(3), 891–900. https://doi.org/10.3758/s13423-022-02056-6
doi: 10.3758/s13423-022-02056-6
Barrouillet, P., & Camos, V. (2015). Working memory: Loss and reconstruction (1st ed.). Psychology Press. https://doi.org/10.4324/9781315755854
doi: 10.4324/9781315755854
Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time Constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133(1), 83–100. https://doi.org/10.1037/0096-3445.133.1.83
doi: 10.1037/0096-3445.133.1.83
pubmed: 14979753
Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 570–585. https://doi.org/10.1037/0278-7393.33.3.570
doi: 10.1037/0278-7393.33.3.570
pubmed: 17470006
Bartsch, L. M., Singmann, H., & Oberauer, K. (2018). The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation. Memory & Cognition, 46(5), 796–808. https://doi.org/10.3758/s13421-018-0805-9
doi: 10.3758/s13421-018-0805-9
Camos, V. (2015). Storing verbal information in working memory. Current Directions in Psychological Science, 24(6), 440–445. https://doi.org/10.1177/0963721415606630
doi: 10.1177/0963721415606630
Camos, V., & Barrouillet, P. (2014). Attentional and non-attentional systems in the maintenance of verbal information in working memory: The executive and phonological loops. Frontiers in Human Neuroscience, 8, 900. https://doi.org/10.3389/fnhum.2014.00900
doi: 10.3389/fnhum.2014.00900
pubmed: 25426049
pmcid: 4224087
Camos, V., & Portrat, S. (2015). The impact of cognitive load on delayed recall. Psychonomic Bulletin & Review, 22(4), 1029–1034. https://doi.org/10.3758/s13423-014-0772-5
doi: 10.3758/s13423-014-0772-5
Camos, V., Mora, G., & Oberauer, K. (2011). Adaptive choice between articulatory rehearsal and attentional refreshing in verbal working memory. Memory & Cognition, 39(2), 231–244. https://doi.org/10.3758/s13421-010-0011-x
doi: 10.3758/s13421-010-0011-x
Camos, V., Johnson, M., Loaiza, V., Portrat, S., Souza, A., & Vergauwe, E. (2018). What is attentional refreshing in working memory?: What is attentional refreshing? Annals of the New York Academy of Sciences, 1424(1), 19–32. https://doi.org/10.1111/nyas.13616
doi: 10.1111/nyas.13616
pubmed: 29542133
Camos, V., Mora, G., Oftinger, A.-L., Mariz Elsig, S., Schneider, P., & Vergauwe, E. (2019). Does semantic long-term memory impact refreshing in verbal working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0000657
doi: 10.1037/xlm0000657
pubmed: 30407025
Cotton, K., & Ricker, T. J. (2021). Working memory consolidation improves long-term memory recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(2), 208–219. https://doi.org/10.1037/xlm0000954
doi: 10.1037/xlm0000954
pubmed: 32833468
de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12. https://doi.org/10.3758/s13428-014-0458-y
doi: 10.3758/s13428-014-0458-y
pubmed: 24683129
Elliott, B. L., & Brewer, G. A. (2019). Divided attention selectively impairs value-directed encoding. Collabra: Psychology, 5(1), 4. https://doi.org/10.1525/collabra.156
doi: 10.1525/collabra.156
Hartshorne, J. K., & Makovski, T. (2019). The effect of working memory maintenance on long-term memory. Memory & Cognition, 47(4), 749–763. https://doi.org/10.3758/s13421-019-00908-6
doi: 10.3758/s13421-019-00908-6
Hitch, G. J., Hu, Y., Allen, R. J., & Baddeley, A. D. (2018). Competition for the focus of attention in visual working memory: Perceptual recency versus executive control: Focus of attention in visual working memory. Annals of the New York Academy of Sciences, 1424(1), 64–75. https://doi.org/10.1111/nyas.13631
doi: 10.1111/nyas.13631
pubmed: 29524359
Jarjat, G., Hoareau, V., Plancher, G., Hot, P., Lemaire, B., & Portrat, S. (2018). What makes working memory traces stable over time?: Working memory conditions for long-term recall. Annals of the New York Academy of Sciences, 1424(1), 149–160. https://doi.org/10.1111/nyas.13668
doi: 10.1111/nyas.13668
pubmed: 29744891
Jarjat, G., Plancher, G., & Portrat, S. (2020). Core mechanisms underlying the long-term stability of working memory traces still work in aging. L’Année psychologique, 120(2), 203. https://doi.org/10.3917/anpsy1.202.0203
doi: 10.3917/anpsy1.202.0203
Jeanneret, S., Bartsch, L. M., & Vergauwe, E. (2022). To be or not to be relevant: Comparing short- and long-term consequences across working memory prioritization procedures [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/vp953
Jeffreys, H. (1961). Theory of probability. Clarendon.
Johnson, M. K. (1992). MEM: Mechanisms of recollection. Journal of Cognitive Neuroscience, 4(3), 268–280. https://doi.org/10.1162/jocn.1992.4.3.268
doi: 10.1162/jocn.1992.4.3.268
pubmed: 23964883
Kawasaki, M., & Yamaguchi, Y. (2013). Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity. Social Cognitive and Affective Neuroscience, 8(5), 523–530. https://doi.org/10.1093/scan/nss027
doi: 10.1093/scan/nss027
pubmed: 22349800
Khader, P. H., Jost, K., Ranganath, C., & Rösler, F. (2010). Theta and alpha oscillations during working-memory maintenance predict successful long-term memory encoding. Neuroscience Letters, 468(3), 339–343. https://doi.org/10.1016/j.neulet.2009.11.028
doi: 10.1016/j.neulet.2009.11.028
pubmed: 19922772
Labaronne, M., Jarjat, G., & Plancher, G. (2023). Attentional refreshing in the absence of long-term memory content: Role of short-term and long-term consolidation. Journal of Cognition, 6(1), 5. https://doi.org/10.5334/joc.246
doi: 10.5334/joc.246
pubmed: 36698788
pmcid: 9838241
Lange, K., Kühn, S., & Filevich, E. (2015). “Just Another Tool for Online Studies”” (JATOS): An easy solution for setup and management of web servers supporting online studies. PLOS ONE, 10(6), e0130834. https://doi.org/10.1371/journal.pone.0130834
doi: 10.1371/journal.pone.0130834
pubmed: 26114751
pmcid: 4482716
Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press. https://doi.org/10.1017/CBO9781139087759
doi: 10.1017/CBO9781139087759
Loaiza, V. M., & McCabe, D. P. (2012). Temporal–contextual processing in working memory: Evidence from delayed cued recall and delayed free recall tests. Memory & Cognition, 40(2), 191–203. https://doi.org/10.3758/s13421-011-0148-2
doi: 10.3758/s13421-011-0148-2
Makowski, D., Ben-Shachar, M., & Lüdecke, D. (2019). bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. Journal of Open Source Software, 4(40), 1541. https://doi.org/10.21105/joss.01541
doi: 10.21105/joss.01541
Mathôt, S. (2017). Bayes like a Baws: Interpreting Bayesian repeated measures in JASP [Blog post]. COGSCI. https://www.cogsci.nl/blog/interpreting-Bayesian-repeated-measures-in-jasp . Accessed 23 May 2019.
McCabe, D. P. (2008). The role of covert retrieval in working memory span tasks: Evidence from delayed recall tests. Journal of Memory and Language, 58(2), 480–494. https://doi.org/10.1016/j.jml.2007.04.004
doi: 10.1016/j.jml.2007.04.004
pubmed: 19633737
pmcid: 2715014
Mora, G., & Camos, V. (2013). Two systems of maintenance in verbal working memory: Evidence from the word length effect. PLoS ONE, 8(7), e70026. https://doi.org/10.1371/journal.pone.0070026
doi: 10.1371/journal.pone.0070026
pubmed: 23894580
pmcid: 3722204
Morey, R. D., & Rouder, J. N. (2015). BayesFactor (version 0.9. 10-2). Computer Software.
New, B., Pallier, C., Ferrand, L., & Matos, R. (2001). Une base de données lexicales du français contemporain sur internet: LEXIQUE
doi: 10.3406/psy.2001.1341
New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36(3), 516–524. https://doi.org/10.3758/BF03195598
doi: 10.3758/BF03195598
Plancher, G., & Barrouillet, P. (2013). Forgetting from working memory: Does novelty encoding matter? Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1), 110–125. https://doi.org/10.1037/a0028475
doi: 10.1037/a0028475
pubmed: 22563635
R Core Team. (2019). R: A language and environment for statistical computing (3.5.3). R Foundation for Statistical Computing. https://www.R-project.org/
Rosselet-Jordan, F. L., Abadie, M., Mariz-Elsig, S., & Camos, V. (2022). Role of attention in the associative relatedness effect in verbal working memory: Behavioral and chronometric perspectives. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(11), 1571–1589. https://doi.org/10.1037/xlm0001102
doi: 10.1037/xlm0001102
pubmed: 35073136
RStudio Team. (2021). RStudio: Integrated development for R. RStudio Inc. http://www.rstudio.com/
Ryan, R. M. (1982). Control and information in the intrapersonal sphere: An extension of cognitive evaluation theory. Journal of Personality and Social Psychology, 43(3), 450–461. https://doi.org/10.1037/0022-3514.43.3.450
doi: 10.1037/0022-3514.43.3.450
Sandry, J., & Ricker, T. J. (2020). Prioritization within visual working memory reflects a flexible focus of attention. Attention, Perception, & Psychophysics, 82(6), 2985–3004. https://doi.org/10.3758/s13414-020-02049-4
doi: 10.3758/s13414-020-02049-4
Sandry, J., Schwark, J. D., & MacDonald, J. (2014). Flexibility within working memory and the focus of attention for sequential verbal information does not depend on active maintenance. Memory & Cognition, 42(7), 1130–1142. https://doi.org/10.3758/s13421-014-0422-1
doi: 10.3758/s13421-014-0422-1
Sandry, J., Zuppichini, M. D., & Ricker, T. J. (2020). Attentional flexibility and prioritization improves long-term memory. Acta Psychologica, 208, 103104. https://doi.org/10.1016/j.actpsy.2020.103104
doi: 10.1016/j.actpsy.2020.103104
pubmed: 32622150
Schneider, S. L., & Rose, M. (2016). Intention to encode boosts memory-related pre-stimulus EEG beta power. NeuroImage, 125, 978–987. https://doi.org/10.1016/j.neuroimage.2015.11.024
doi: 10.1016/j.neuroimage.2015.11.024
pubmed: 26584862
Souza, A. S., & Oberauer, K. (2017). Time to process information in working memory improves episodic memory. Journal of Memory and Language, 96, 155–167. https://doi.org/10.1016/j.jml.2017.07.002
doi: 10.1016/j.jml.2017.07.002