On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions.

CCSD(T) DFT intermolecular stacking oligothiophenes supramolecular junctions

Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
28 Aug 2023
Historique:
received: 14 08 2023
revised: 23 08 2023
accepted: 24 08 2023
medline: 11 9 2023
pubmed: 9 9 2023
entrez: 9 9 2023
Statut: epublish

Résumé

There have been attempts, both experimental and based on density-functional theory (DFT) modeling, at understanding the factors that govern the electronic conductance behavior of single-stacking junctions formed by pi-conjugated materials in nanogaps. Here, a reliable description of relevant stacked configurations of some thiophene-cored systems is provided by means of high-level quantum chemical approaches. The minimal structures of these configurations, which are found using the dispersion-corrected DFT approach, are employed in calculations that apply the coupled cluster method with singles, doubles and perturbative triples [CCSD(T)] and extrapolations to the complete basis set (CBS) limit in order to reliably quantify the strength of intermolecular binding, while their physical origin is investigated using the DFT-based symmetry-adapted perturbation theory (SAPT) of intermolecular interactions. In particular, for symmetrized S-Tn dimers (where "S" and "T" denote a thiomethyl-containing anchor group and a thiophene segment comprising "n" units, respectively), the CCSD(T)/CBS interaction energies are found to increase linearly with n ≤ 6, and significant conformational differences between the flanking 2-thiophene group in S-T1 and S-T2 are described by the CCSD(T)/CBS and SAPT/CBS computations. These results are put into the context of previous work on charge transport properties of S-Tn and other types of supramolecular junctions.

Identifiants

pubmed: 37686156
pii: ijms241713349
doi: 10.3390/ijms241713349
pmc: PMC10487960
pii:
doi:

Substances chimiques

Polymers 0
Thiophenes 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Czech Science Foundation
ID : GA 20-01233S

Références

J Chem Phys. 2022 Mar 7;156(9):094302
pubmed: 35259899
Chem Rev. 2016 May 11;116(9):5038-71
pubmed: 26943241
J Chem Phys. 2010 Jun 21;132(23):234109
pubmed: 20572691
J Chem Phys. 2015 Jul 21;143(3):034108
pubmed: 26203015
J Am Chem Soc. 2016 Jan 20;138(2):679-87
pubmed: 26694660
J Chem Phys. 2022 May 28;156(20):204303
pubmed: 35649849
J Chem Phys. 2016 Jan 14;144(2):024109
pubmed: 26772556
J Chem Phys. 2020 May 14;152(18):184107
pubmed: 32414256
J Chem Phys. 2020 Apr 14;152(14):144107
pubmed: 32295355
J Chem Theory Comput. 2016 Feb 9;12(2):459-65
pubmed: 26730741
J Phys Chem Lett. 2018 Feb 15;9(4):745-750
pubmed: 29369638
Nano Lett. 2020 Nov 11;20(11):7980-7986
pubmed: 33047599
Nano Lett. 2008 Jun;8(6):1673-8
pubmed: 18457456
Angew Chem Int Ed Engl. 2023 Mar 20;62(13):e202216819
pubmed: 36585932
J Am Chem Soc. 2023 Jul 26;145(29):15788-15795
pubmed: 37437895
J Chem Phys. 2006 Jan 21;124(3):034108
pubmed: 16438568
Nat Commun. 2021 Jun 24;12(1):3927
pubmed: 34168142
J Comput Chem. 2006 Nov 30;27(15):1787-99
pubmed: 16955487
Nanoscale. 2018 Feb 15;10(7):3362-3368
pubmed: 29388658
Int J Mol Sci. 2022 Dec 12;23(24):
pubmed: 36555413
J Chem Theory Comput. 2011 Aug 9;7(8):2427-2438
pubmed: 21836824
J Am Chem Soc. 2019 Jul 17;141(28):11027-11035
pubmed: 31267750
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
J Chem Theory Comput. 2013 Aug 13;9(8):3364-3374
pubmed: 24098094
J Chem Phys. 2013 Oct 7;139(13):134101
pubmed: 24116546
Angew Chem Int Ed Engl. 2020 Feb 17;59(8):3280-3286
pubmed: 31808280
Adv Mater. 2023 Jun;35(22):e2209088
pubmed: 36512432
Phys Chem Chem Phys. 2017 Dec 13;19(48):32184-32215
pubmed: 29110012
J Chem Phys. 2010 Oct 7;133(13):134105
pubmed: 20942521
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305
pubmed: 16240044
J Am Chem Soc. 2020 Nov 11;142(45):19101-19109
pubmed: 33135882
ACS Nano. 2022 Mar 22;16(3):3476-3505
pubmed: 35179354
Molecules. 2023 May 31;28(11):
pubmed: 37298953
J Chem Phys. 2013 Jan 21;138(3):034106
pubmed: 23343267
J Am Chem Soc. 2023 Jan 25;145(3):1617-1630
pubmed: 36625785
Angew Chem Int Ed Engl. 2023 May 2;62(19):e202302693
pubmed: 36896843
Angew Chem Int Ed Engl. 2022 Jul 4;61(27):e202200191
pubmed: 35417060

Auteurs

Jiří Czernek (J)

Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16200 Prague, Czech Republic.

Jiří Brus (J)

Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16200 Prague, Czech Republic.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH