Methodology for Constructing a Knowledgebase for Plant Gene Regulation Information.
Database
GRASSIUS
Gene regulation
Knowledgebase methodology
Plant transcription factors
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
11
9
2023
pubmed:
8
9
2023
entrez:
8
9
2023
Statut:
ppublish
Résumé
The amount of biological data is growing at a rapid pace as many high-throughput omics technologies and data pipelines are developed. This is resulting in the growth of databases for DNA and protein sequences, gene expression, protein accumulation, structural, and localization information. The diversity and multi-omics nature of such bioinformatic data requires well-designed databases for flexible organization and presentation. Besides general-purpose online bioinformatic databases, users need narrowly focused online databases to quickly access a meaningful collection of related data for their research. Here, we describe the methodology used to implement a plant gene regulatory knowledgebase, with data, query, and tool features, as well as the ability to expand to accommodate future datasets. We exemplify this methodology for the GRASSIUS knowledgebase, but it is applicable to developing and updating similar plant gene regulatory knowledgebases. GRASSIUS organizes and presents gene regulatory data from grass species with a central focus on maize (Zea mays). The main class of data presented include not only the families of transcription factors (TFs) and co-regulators (CRs) but also protein-DNA interaction data, where available.
Identifiants
pubmed: 37682481
doi: 10.1007/978-1-0716-3354-0_17
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
277-300Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Schmitz RJ, Grotewold E, Stam M (2022) Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell 34(2):718–741. https://doi.org/10.1093/plcell/koab281
doi: 10.1093/plcell/koab281
pubmed: 34918159
Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13(1):59–69. https://doi.org/10.1038/nrg3095
doi: 10.1038/nrg3095
Davidson E, Levin M (2005) Gene regulatory networks. Proc Natl Acad Sci 102(14):4935–4935. https://doi.org/10.1073/pnas.0502024102
doi: 10.1073/pnas.0502024102
pubmed: 15809445
pmcid: 556010
Jones DM, Vandepoele K (2020) Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Curr Opin Plant Biol 54:42–48. https://doi.org/10.1016/j.pbi.2019.12.008
doi: 10.1016/j.pbi.2019.12.008
pubmed: 32062128
Macneil LT, Walhout AJ (2011) Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res 21(5):645–657. https://doi.org/10.1101/gr.097378.109
doi: 10.1101/gr.097378.109
pubmed: 21324878
pmcid: 3083081
Lin HY, Liu Q, Li X, Yang J, Liu S, Huang Y, Scanlon MJ, Nettleton D, Schnable PS (2017) Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS. Genome Biol 18(1):192. https://doi.org/10.1186/s13059-017-1328-6
doi: 10.1186/s13059-017-1328-6
pubmed: 29041960
pmcid: 5645915
Springer N, de León N, Grotewold E (2019) Challenges of translating gene regulatory information into agronomic improvements. Trends Plant Sci 24(12):1075–1082. https://doi.org/10.1016/j.tplants.2019.07.004
doi: 10.1016/j.tplants.2019.07.004
pubmed: 31377174
Kulkarni SR, Vandepoele K (2020) Inference of plant gene regulatory networks using data-driven methods: a practical overview. Biochim Biophys Acta Gene Regul Mech 1863(6):194447. https://doi.org/10.1016/j.bbagrm.2019.194447
doi: 10.1016/j.bbagrm.2019.194447
pubmed: 31678628
Mukundi E, Gomez-Cano F, Ouma WZ, Grotewold E (2017) Design of knowledge bases for plant gene regulatory networks. In: Kaufmann K, Mueller-Roeber B (eds) Plant gene regulatory networks: methods and protocols. Springer, New York, pp 207–223. https://doi.org/10.1007/978-1-4939-7125-1_14
doi: 10.1007/978-1-4939-7125-1_14
Yilmaz A, Nishiyama MY Jr, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149(1):171–180. https://doi.org/10.1104/pp.108.128579
doi: 10.1104/pp.108.128579
pubmed: 18987217
pmcid: 2613736
O’Mara FP (2012) The role of grasslands in food security and climate change. Ann Bot 110(6):1263–1270. https://doi.org/10.1093/aob/mcs209
doi: 10.1093/aob/mcs209
pubmed: 23002270
pmcid: 3478061
Jin J, Zhang H, Kong L, Gao G, Luo J (2013) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(D1):D1182–D1187. https://doi.org/10.1093/nar/gkt1016
doi: 10.1093/nar/gkt1016
pubmed: 24174544
pmcid: 3965000
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin C-S, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546(7659):524–527. https://doi.org/10.1038/nature22971
doi: 10.1038/nature22971
pubmed: 28605751
pmcid: 7052699
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1):4. https://doi.org/10.1186/1939-8433-6-4
doi: 10.1186/1939-8433-6-4
pubmed: 24280374
pmcid: 5395016
Odell SG, Lazo GR, Woodhouse MR, Hane DL, Sen TZ (2017) The art of curation at a biological database: principles and application. Curr Plant Biol 11–12:2–11. https://doi.org/10.1016/j.cpb.2017.11.001
doi: 10.1016/j.cpb.2017.11.001
Schwanz LE, Gunderson A, Iglesias-Carrasco M, Johnson MA, Kong JD, Riley J, Wu NC (2022) Best practices for building and curating databases for comparative analyses. J Exp Biol 225(Suppl_1). https://doi.org/10.1242/jeb.243295
Tang YA, Pichler K, Füllgrabe A, Lomax J, Malone J, Munoz-Torres MC, Vasant DV, Williams E, Haendel M (2019) Ten quick tips for biocuration. PLoS Comput Biol 15(5):e1006906. https://doi.org/10.1371/journal.pcbi.1006906
doi: 10.1371/journal.pcbi.1006906
pubmed: 31048830
pmcid: 6497217
Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45(D1):D1040–D1045. https://doi.org/10.1093/nar/gkw982
doi: 10.1093/nar/gkw982
pubmed: 27924042
Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4(1):25. https://doi.org/10.1186/1471-2105-4-25
doi: 10.1186/1471-2105-4-25
pubmed: 12820902
pmcid: 166152
Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet. A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140(3):818–829. https://doi.org/10.1104/pp.105.072280
doi: 10.1104/pp.105.072280
pubmed: 16524982
pmcid: 1400579
Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Res 39(Database issue):D1118–D1122. https://doi.org/10.1093/nar/gkq1120
doi: 10.1093/nar/gkq1120
pubmed: 21059685
Gray J, Bevan M, Brutnell T, Buell CR, Cone K, Hake S, Jackson D, Kellogg E, Lawrence C, McCouch S, Mockler T, Moose S, Paterson A, Peterson T, Rokshar D, Souza GM, Springer N, Stein N, Timmermans M, Wang GL, Grotewold E (2009) A recommendation for naming transcription factor proteins in the grasses. Plant Physiol 149(1):4–6. https://doi.org/10.1104/pp.108.128504
doi: 10.1104/pp.108.128504
pubmed: 19126689
pmcid: 2613739
Riaño-Pachón DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8(1):42. https://doi.org/10.1186/1471-2105-8-42
doi: 10.1186/1471-2105-8-42
pubmed: 17286856
pmcid: 1802092
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913
doi: 10.1093/nar/gkaa913
pubmed: 33125078
Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(suppl_2):W29–W37. https://doi.org/10.1093/nar/gkr367
doi: 10.1093/nar/gkr367
pubmed: 21593126
pmcid: 3125773
Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, Marchler-Bauer A, Landrum M, Lathrop S, Lu Z, Madden TL, O’Leary N, Phan L, Rangwala SH, Schneider VA, Skripchenko Y, Wang J, Ye J, Trawick BW, Pruitt KD, Sherry ST (2021) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 49(D1):D10–d17. https://doi.org/10.1093/nar/gkaa892
doi: 10.1093/nar/gkaa892
pubmed: 33095870
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–d203. https://doi.org/10.1093/nar/gkw1129
doi: 10.1093/nar/gkw1129
pubmed: 27899674
Shim S, Park CM, Seo PJ (2021) iRegNet: an integrative Regulatory Network analysis tool for Arabidopsis thaliana. Plant Physiol 187(3):1292–1309. https://doi.org/10.1093/plphys/kiab389
doi: 10.1093/plphys/kiab389
pubmed: 34618085
pmcid: 8566287
Yang F, Ouma WZ, Li W, Doseff AI, Grotewold E (2016) Chapter eleven – establishing the architecture of plant gene regulatory networks. In: O’Connor SE (ed) Methods in enzymology, vol 576. Academic Press, pp 251–304. https://doi.org/10.1016/bs.mie.2016.03.003
doi: 10.1016/bs.mie.2016.03.003
Galli M, Feng F, Gallavotti A (2020) Mapping regulatory determinants in plants. Front Genet 11:591194. https://doi.org/10.3389/fgene.2020.591194
doi: 10.3389/fgene.2020.591194
pubmed: 33193733
pmcid: 7655918
Kang SE, Breton G, Pruneda-Paz JL (2018) Construction of Arabidopsis transcription factor ORFeome collections and identification of protein-DNA interactions by high-throughput yeast one-hybrid screens. Methods Mol Biol 1794:151–182. https://doi.org/10.1007/978-1-4939-7871-7_10
doi: 10.1007/978-1-4939-7871-7_10
pubmed: 29855956
Li GZ, Zheng YX, Chen SJ, Liu J, Wang PF, Wang YH, Guo TC, Kang GZ (2021) TaWRKY74 participates copper tolerance through regulation of TaGST1 expression and GSH content in wheat. Ecotoxicol Environ Saf 221:112469. https://doi.org/10.1016/j.ecoenv.2021.112469
doi: 10.1016/j.ecoenv.2021.112469
pubmed: 34198190
Reece-Hoyes JS, Marian Walhout AJ (2012) Yeast one-hybrid assays: a historical and technical perspective. Methods 57(4):441–447. https://doi.org/10.1016/j.ymeth.2012.07.027
doi: 10.1016/j.ymeth.2012.07.027
pubmed: 22884952
pmcid: 3448804
Yang F, Li W, Jiang N, Yu H, Morohashi K, Ouma WZ, Morales-Mantilla DE, Gomez-Cano FA, Mukundi E, Prada-Salcedo LD, Velazquez RA, Valentin J, Mejía-Guerra MK, Gray J, Doseff AI, Grotewold E (2017) A maize gene regulatory network for phenolic metabolism. Mol Plant 10(3):498–515. https://doi.org/10.1016/j.molp.2016.10.020
doi: 10.1016/j.molp.2016.10.020
pubmed: 27871810
Zhuang Y, Chen S, Lian W, Xu L, Wang D, Wang C, Meng J, Tang X, Xu H, Wang S, Du L, Zhang Y, Zhou G, Chai G (2021) A high-throughput screening system for populus wood-associated transcription factors and its application to lignin regulation. Front Plant Sci 12:715809. https://doi.org/10.3389/fpls.2021.715809
doi: 10.3389/fpls.2021.715809
pubmed: 35095939
Cortijo S, Charoensawan V, Roudier F, Wigge PA (2018) Chromatin immunoprecipitation sequencing (ChIP-Seq) for transcription factors and chromatin factors in Arabidopsis thaliana roots: from material collection to data analysis. Methods Mol Biol 1761:231–248. https://doi.org/10.1007/978-1-4939-7747-5_18
doi: 10.1007/978-1-4939-7747-5_18
pubmed: 29525962
Xu S, Huang J, Jin J, Huang W (2021) Global identification for targets of circadian transcription factors in Arabidopsis and rice using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Methods Mol Biol 2297:61–74. https://doi.org/10.1007/978-1-0716-1370-2_7
doi: 10.1007/978-1-0716-1370-2_7
pubmed: 33656670
Burdo B, Gray J, Goetting-Minesky MP, Wittler B, Hunt M, Li T, Velliquette D, Thomas J, Gentzel I, dos Santos Brito M, Mejía-Guerra MK, Connolly LN, Qaisi D, Li W, Casas MI, Doseff AI, Grotewold E (2014) The Maize TFome--development of a transcription factor open reading frame collection for functional genomics. Plant J 80(2):356–366. https://doi.org/10.1111/tpj.12623
doi: 10.1111/tpj.12623
pubmed: 25053252
pmcid: 4283594
Gray J, Burdo B, Goetting-Minesky MP, Wittler B, Hunt M, Li T, Velliquette D, Thomas J, Agarwal T, Key K, Gentzel I, Brito MS, Mejía-Guerra MK, Connolly LN, Qaisi D, Li W, Casas MI, Doseff AI, Grotewold E (2015) Protocol for the generation of a transcription factor open reading frame collection (TFome). Bio-protocol 5(15):e1547. https://doi.org/10.21769/BioProtoc.1547
doi: 10.21769/BioProtoc.1547
Bartlett A, O’Malley RC, Huang SC, Galli M, Nery JR, Gallavotti A, Ecker JR (2017) Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc 12(8):1659–1672. https://doi.org/10.1038/nprot.2017.055
doi: 10.1038/nprot.2017.055
pubmed: 28726847
pmcid: 5576341
Lai X, Stigliani A, Lucas J, Hugouvieux V, Parcy F, Zubieta C (2020) Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. Nucleic Acids Res 48(17):9637–9648. https://doi.org/10.1093/nar/gkaa729
doi: 10.1093/nar/gkaa729
pubmed: 32890394
pmcid: 7515736
O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165(5):1280–1292. https://doi.org/10.1016/j.cell.2016.04.038
doi: 10.1016/j.cell.2016.04.038
pubmed: 27203113
pmcid: 4907330
Franco-Zorrilla JM, Prat S (2021) DAP-Seq identification of transcription factor-binding sites in potato. Methods Mol Biol 2354:123–142. https://doi.org/10.1007/978-1-0716-1609-3_6
doi: 10.1007/978-1-0716-1609-3_6
pubmed: 34448158
Gomez-Cano F, Chu YH, Cruz-Gomez M, Abdullah HM, Lee YS, Schnell DJ, Grotewold E (2022) Exploring Camelina sativa lipid metabolism regulation by combining gene co-expression and DNA affinity purification analyses. Plant J 110(2):589–606. https://doi.org/10.1111/tpj.15682
doi: 10.1111/tpj.15682
pubmed: 35064997
Lei X, Liu Z, Xie Q, Fang J, Wang C, Li J, Wang C, Gao C (2022) Construction of two regulatory networks related to salt stress and lignocellulosic synthesis under salt stress based on a Populus davidiana × P. bolleana transcriptome analysis. Plant Mol Biol 109(6):689–702. https://doi.org/10.1007/s11103-022-01267-8
doi: 10.1007/s11103-022-01267-8
pubmed: 35486290
Haberle V, Forrest ARR, Hayashizaki Y, Carninci P, Lenhard B (2015) CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res 43(8):e51–e51. https://doi.org/10.1093/nar/gkv054
doi: 10.1093/nar/gkv054
pubmed: 25653163
pmcid: 4417143
Morioka MS, Kawaji H, Nishiyori-Sueki H, Murata M, Kojima-Ishiyama M, Carninci P, Itoh M (2020) Cap analysis of gene expression (CAGE): a quantitative and genome-wide assay of transcription start sites. Methods Mol Biol 2120:277–301. https://doi.org/10.1007/978-1-0716-0327-7_20
doi: 10.1007/978-1-0716-0327-7_20
pubmed: 32124327
Batut P, Gingeras TR (2013) RAMPAGE: promoter activity profiling by paired-end sequencing of 5′-complete cDNAs. Curr Protoc Mol Biol 104(1):25B.11.21–25B.11.16. https://doi.org/10.1002/0471142727.mb25b11s104
Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487. https://doi.org/10.1126/science.270.5235.484
doi: 10.1126/science.270.5235.484
pubmed: 7570003
Morton T, Petricka J, Corcoran DL, Li S, Winter CM, Carda A, Benfey PN, Ohler U, Megraw M (2014) Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. Plant Cell 26(7):2746–2760. https://doi.org/10.1105/tpc.114.125617
doi: 10.1105/tpc.114.125617
pubmed: 25035402
pmcid: 4145111
Mejia-Guerra MK, Li W, Doseff AI, Grotewold E (2018) Genome-wide TSS identification in maize. Methods Mol Biol 1830:239–256. https://doi.org/10.1007/978-1-4939-8657-6_14
doi: 10.1007/978-1-4939-8657-6_14
pubmed: 30043374
Mejía-Guerra MK, Li W, Galeano NF, Vidal M, Gray J, Doseff AI, Grotewold E (2015) Core promoter plasticity between maize tissues and genotypes contrasts with predominance of sharp transcription initiation sites. Plant Cell 27(12):3309–3320. https://doi.org/10.1105/tpc.15.00630
doi: 10.1105/tpc.15.00630
pubmed: 26628745
pmcid: 4707454
Heyndrickx KS, Van de Velde J, Wang C, Weigel D, Vandepoele K (2014) A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Plant Cell 26(10):3894–3910. https://doi.org/10.1105/tpc.114.130591
doi: 10.1105/tpc.114.130591
pubmed: 25361952
pmcid: 4247581
Jayaram N, Usvyat D, Martin ACR (2016) Evaluating tools for transcription factor binding site prediction. BMC Bioinformatics 17(1):547. https://doi.org/10.1186/s12859-016-1298-9
doi: 10.1186/s12859-016-1298-9
pubmed: 27806697
pmcid: 6889335
Schweizer G, Wagner A (2021) Both binding strength and evolutionary accessibility affect the population frequency of transcription factor binding sequences in Arabidopsis thaliana. Genome Biol Evol 13(12). https://doi.org/10.1093/gbe/evab273
Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34(Database issue):D108–D110. https://doi.org/10.1093/nar/gkj143
doi: 10.1093/nar/gkj143
pubmed: 16381825
Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Berhanu Lemma R, Turchi L, Blanc-Mathieu R, Lucas J, Boddie P, Khan A, Manosalva Pérez N, Fornes O, Leung Tiffany Y, Aguirre A, Hammal F, Schmelter D, Baranasic D, Ballester B, Sandelin A, Lenhard B, Vandepoele K, Wasserman WW, Parcy F, Mathelier A (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50(D1):D165–D173. https://doi.org/10.1093/nar/gkab1113
doi: 10.1093/nar/gkab1113
pubmed: 34850907
Messeguer X, Escudero R, Farré D, Núñez O, Martı́nez J, Albà MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18(2):333–334. https://doi.org/10.1093/bioinformatics/18.2.333
doi: 10.1093/bioinformatics/18.2.333
pubmed: 11847087
Rohr CO, Parra RG, Yankilevich P, Perez-Castro C (2013) INSECT: IN-silico SEarch for Co-occurring Transcription factors. Bioinformatics 29(22):2852–2858. https://doi.org/10.1093/bioinformatics/btt506
doi: 10.1093/bioinformatics/btt506
pubmed: 24008418
Schug J (2008) Using TESS to predict transcription factor binding sites in DNA sequence. Curr Protoc Bioinformatics Chapter 2:Unit 2.6. https://doi.org/10.1002/0471250953.bi0206s21
doi: 10.1002/0471250953.bi0206s21
pubmed: 18428685
Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC (2019) PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res 47(D1):D1155–D1163. https://doi.org/10.1093/nar/gky1081
doi: 10.1093/nar/gky1081
pubmed: 30395277
Lambert SA, Yang AWH, Sasse A, Cowley G, Albu M, Caddick MX, Morris QD, Weirauch MT, Hughes TR (2019) Similarity regression predicts evolution of transcription factor sequence specificity. Nat Genet 51(6):981–989. https://doi.org/10.1038/s41588-019-0411-1
doi: 10.1038/s41588-019-0411-1
pubmed: 31133749
Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout AJM, Bouget FY, Ratsch G, Larrondo LF, Ecker JR, Hughes TR (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158(6):1431–1443. https://doi.org/10.1016/j.cell.2014.08.009
doi: 10.1016/j.cell.2014.08.009
pubmed: 25215497
pmcid: 4163041
Gera T, Jonas F, More R, Barkai N (2022) Evolution of binding preferences among whole-genome duplicated transcription factors. eLife 11:e73225. https://doi.org/10.7554/eLife.73225
doi: 10.7554/eLife.73225
pubmed: 35404235
pmcid: 9000951
Hehl R (2017) From experiment-driven database analyses to database-driven experiments in Arabidopsis thaliana transcription factor research. Plant Sci 262:141–147. https://doi.org/10.1016/j.plantsci.2017.06.011
doi: 10.1016/j.plantsci.2017.06.011
pubmed: 28716409
Kanofsky K, Rusche J, Eilert L, Machens F, Hehl R (2021) Unusual DNA-binding properties of the Arabidopsis thaliana WRKY50 transcription factor at target gene promoters. Plant Cell Rep 40(1):69–83. https://doi.org/10.1007/s00299-020-02611-2
doi: 10.1007/s00299-020-02611-2
pubmed: 33006643
Jung S, Menda N, Redmond S, Buels RM, Friesen M, Bendana Y, Sanderson L-A, Lapp H, Lee T, MacCallum B, Bett KE, Cain S, Clements D, Mueller LA, Main D (2011) The Chado Natural Diversity module: a new generic database schema for large-scale phenotyping and genotyping data. Database 2011:bar051. https://doi.org/10.1093/database/bar051
doi: 10.1093/database/bar051
pubmed: 22120662
pmcid: 3225077
Droc G, Larivière D, Guignon V, Yahiaoui N, This D, Garsmeur O, Dereeper A, Hamelin C, Argout X, Dufayard JF, Lengelle J, Baurens FC, Cenci A, Pitollat B, D’Hont A, Ruiz M, Rouard M, Bocs S (2013) The banana genome hub. Database (Oxford) 2013:bat035. https://doi.org/10.1093/database/bat035
doi: 10.1093/database/bat035
pubmed: 23707967
Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller LA (2015) The Sol Genomics Network (SGN)--from genotype to phenotype to breeding. Nucleic Acids Res 43(Database issue):D1036–D1041. https://doi.org/10.1093/nar/gku1195
doi: 10.1093/nar/gku1195
pubmed: 25428362
Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KF, Schwartz DC, Town CD (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15:312. https://doi.org/10.1186/1471-2164-15-312
doi: 10.1186/1471-2164-15-312
pubmed: 24767513
pmcid: 4234490
Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, Matthews BB, Millburn G, Antonazzo G, Trovisco V, Kaufman TC, Calvi BR (2019) FlyBase 2.0: the next generation. Nucleic Acids Res 47(D1):D759–D765. https://doi.org/10.1093/nar/gky1003
doi: 10.1093/nar/gky1003
pubmed: 30364959
Upton D (2007) CodeIgniter for rapid PHP application development: improve your PHP coding productivity with the free compact open-source MVC CodeIgniter framework! Packt Publishing, Birmingham
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2
doi: 10.1038/s41586-021-03819-2
pubmed: 34265844
pmcid: 8371605
Wang J, Youkharibache P, Zhang D, Lanczycki CJ, Geer RC, Madej T, Phan L, Ward M, Lu S, Marchler GH, Wang Y, Bryant SH, Geer LY, Marchler-Bauer A (2020) iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics 36(1):131–135. https://doi.org/10.1093/bioinformatics/btz502
doi: 10.1093/bioinformatics/btz502
pubmed: 31218344
Priyam A, Woodcroft BJ, Rai V, Moghul I, Munagala A, Ter F, Chowdhary H, Pieniak I, Maynard LJ, Gibbins MA, Moon H, Davis-Richardson A, Uludag M, Watson-Haigh NS, Challis R, Nakamura H, Favreau E, Gómez EA, Pluskal T, Leonard G, Rumpf W, Wurm Y (2019) Sequenceserver: a modern graphical user interface for custom BLAST databases. Mol Biol Evol 36(12):2922–2924. https://doi.org/10.1093/molbev/msz185
doi: 10.1093/molbev/msz185
pubmed: 31411700
pmcid: 6878946