Dependence on the socio-economic system impairs the sustainability of pasture-based animal agriculture.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 08 2023
31 08 2023
Historique:
received:
19
04
2022
accepted:
28
08
2023
medline:
4
9
2023
pubmed:
1
9
2023
entrez:
31
8
2023
Statut:
epublish
Résumé
Livestock systems contribution to environmental change is controversial. Pasture-based systems are considered a sustainable alternative due to their adaptation to the use of local natural resources. However, they have limited productivity per product unit and, in Europe, depend on public economic support. Furthermore, they are heterogeneous in farm structure and resources use, which may determine their sustainability. We use emergy accounting to assess the sustainability of mountain pasture-based cattle systems and analyse the variability among farms. Emergy accounting assesses the sustainability performance of complex systems (i.e., farming systems) and their interaction with other systems (i.e., the environment and the socio-economic system) focusing on the origin, quality and quantity of the energy required for the system to function. Results show that pasture-based systems largely use local natural renewable resources but depend largely on the wider socio-economic system given their reliance on public economic support and purchased animal feeds. This economic dependence turns out in most farms largely using non-renewable resources. Increasing self-produced feeds and grazing on natural pastures can reduce the dependence on the socio-economic system and improve farm sustainability.
Identifiants
pubmed: 37653233
doi: 10.1038/s41598-023-41524-4
pii: 10.1038/s41598-023-41524-4
pmc: PMC10471625
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14307Informations de copyright
© 2023. Springer Nature Limited.
Références
Campbell, B. M. et al. Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol. Soc. 22(4), 8. https://doi.org/10.5751/ES-09595-220408 (2017).
IPCC. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2019) https://doi.org/10.5281/zenodo.3831673 .
Leroy, F. et al. Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets—An argument against drastic limitation of livestock in the food system. Animal 16, 100457 (2022).
pubmed: 35158307
doi: 10.1016/j.animal.2022.100457
Muñoz-Ulecia, E., Rodríguez Gómez, M., Bernués Jal, A., Benhamou Prat, A. & Martín-Collado, D. Do animal source foods always ensure healthy, sustainable, and ethical diets?. Animal 16, 1 (2022).
doi: 10.1016/j.animal.2022.100643
Rivera-Ferre, M. G. et al. Re-framing the climate change debate in the livestock sector: Mitigation and adaptation options. Wiley Interdiscip. Rev. Clim. Chang. 7, 869–892 (2016).
doi: 10.1002/wcc.421
McGee, M. et al. Performance, meat quality, profitability, and greenhouse gas emissions of suckler bulls from pasture-based compared to an indoor high-concentrate weanling-to-beef finishing system. Agric. Syst. 198, 103379 (2022).
doi: 10.1016/j.agsy.2022.103379
Garnett, T. et al. Grazed and confused? Ruminating on cattle, grazing systems, methane, nitrous oxide, the soil carbon sequestration question - and what it all means for greenhouse gas emissions. FCRN. https://edepot.wur.nl/427016 (2017).
European, C., Centre, J. R. & Sustainability, I. for E. and. International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Publications Office of the European Union (2010) https://doi.org/10.2788/38479 .
European Environment Agency. Annual European Union greenhouse gas inventory 1990–2018 and inventory report 2020. (2020).
European Commission. The European Green Deal. COM vol. 9 https://jurnal.globalhealthsciencegroup.com/index.php/JPPP/article/download/83/65%0A http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L603546864%5Cn https://doi.org/10.1155/2015/420723 https://doi.org/10.1007/978-3-319-76 (2019).
Raugei, M., Rugani, B., Benetto, E. & Ingwersen, W. W. Integrating emergy into LCA: Potential added value and lingering obstacles. Ecol. Modell. 271, 4–9 (2014).
doi: 10.1016/j.ecolmodel.2012.11.025
Odum, H. T. Environmental Accounting: Emergy and Environmental Decision making (Wiley, 1996).
van der Werf, H. M. G., Knudsen, M. T. & Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 3, 419–425 (2020).
doi: 10.1038/s41893-020-0489-6
Martín-López, B. et al. Nature’ s contributions to people in mountains: A review. PLoS ONE 14, 1–24 (2019).
doi: 10.1371/journal.pone.0217847
Ripoll-Bosch, R., Joy, M. & Bernués, A. Role of self-sufficiency, productivity and diversification on the economic sustainability of farming systems with autochthonous sheep breeds in less favoured areas in Southern Europe. Animal 8, 1229–1237 (2014).
pubmed: 23552287
doi: 10.1017/S1751731113000529
Tejedor-Rodríguez, C. et al. Investigating Neolithic caprine husbandry in the Central Pyrenees: Insights from a multi-proxy study at Els Trocs cave (Bisaurri, Spain). PLoS ONE 16, e0244139 (2021).
pubmed: 33406086
pmcid: 7787385
doi: 10.1371/journal.pone.0244139
Muñoz-Ulecia, E. et al. Drivers of change in mountain agriculture: A thirty-year analysis of trajectories of evolution of cattle farming systems in the Spanish Pyrenees. Agric. Syst. 186, 102983 (2021).
doi: 10.1016/j.agsy.2020.102983
Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).
pubmed: 26674194
pmcid: 4707862
doi: 10.1098/rsif.2015.0891
Veysset, P., Lherm, M., Roulenc, M., Troquier, C. & Bébin, D. Productivity and technical efficiency of suckler beef production systems: Trends for the period 1990 to 2012. Animal 9, 2050–2059. https://doi.org/10.1017/S1751731115002013 (2015).
doi: 10.1017/S1751731115002013
pubmed: 26577645
Bernués, A., Ruiz, R., Olaizola, A., Villalba, D. & Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 139, 44–57 (2011).
doi: 10.1016/j.livsci.2011.03.018
Veysset, P., Lherm, M., Bébin, D. & Roulenc, M. Mixed crop-livestock farming systems: A sustainable way to produce beef? Commercial farms results, questions and perspectives. Animal 8, 1218–1228 (2014).
pubmed: 24589421
doi: 10.1017/S1751731114000378
Brown, M. T., Brandt-Williams, S. L., Tilley, D. & Ulgiati, S. Emergy synthesis: An Introduction. In Emergy Synthesis: theory and applications of the emergy methodology (ed. Brown, M. T.) (2000).
Thollander, P., Karlsson, M., Rohdin, P., Wollin, J. & Rosenqvist, J. General energy theory. Introd. Ind. Energy Effic. https://doi.org/10.1016/b978-0-12-817247-6.00002-x (2020).
doi: 10.1016/b978-0-12-817247-6.00002-x
Castellini, C., Bastianoni, S., Granai, C., Bosco, A. D. & Brunetti, M. Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agric. Ecosyst. Environ. 114, 343–350 (2006).
doi: 10.1016/j.agee.2005.11.014
Guan, F. C., Sha, Z. P., Zhang, Y. Y., Wang, J. F. & Wang, C. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China. J. Zhejiang Univ. Sci. B 17, 628–639 (2016).
pubmed: 27487808
pmcid: 4980441
doi: 10.1631/jzus.B1500154
Panzieri, M., Marchettini, N. & Bastianoni, S. A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systems. Int. J. Sustain. Dev. World Ecol. 9, 1–8 (2002).
doi: 10.1080/13504500209470097
Patrizi, N., Niccolucci, V., Castellini, C., Pulselli, F. M. & Bastianoni, S. Sustainability of agro-livestock integration: Implications and results of Emergy evaluation. Sci. Total Environ. 622–623, 1543–1552 (2018).
pubmed: 29126636
doi: 10.1016/j.scitotenv.2017.10.029
Rodríguez-Ortega, T., Bernués, A., Olaizola, A. M. & Brown, M. T. Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. J. Clean. Prod. 144, 171–179 (2017).
doi: 10.1016/j.jclepro.2016.12.089
Bastianoni, S., Marchettini, N., Panzieri, M. & Tiezzi, E. Sustainability assessment of a farm in the Chianti area (Italy). J. Clean. Prod. 9, 365–373 (2001).
doi: 10.1016/S0959-6526(00)00079-2
Fonseca, A. M. P., Marques, C. A. F., Pinto-Correia, T. & Campbell, D. E. Emergy analysis of a silvo-pastoral system, a case study in southern Portugal. Agrofor. Syst. 90, 137–157 (2016).
doi: 10.1007/s10457-015-9888-5
Fonseca, A. M. P., Marques, C. A. F., Pinto-Correia, T., Guiomar, N. & Campbell, D. E. Emergy evaluation for decision-making in complex multifunctional farming systems. Agric. Syst. 171, 1–12 (2019).
pubmed: 30976135
pmcid: 6452492
doi: 10.1016/j.agsy.2018.12.009
Haden, A. C. Emergy analysis of Food Production at S&S Homestead farm. S&S Cent. Sustain. Agric., Lopez Island, WA, USA (2002).
Kuczuk, A., Pospolita, J. & Wacław, S. Energy and emergy analysis of mixed crop-livestock farming. E3S Web Conf. 19, 02033 (2017).
doi: 10.1051/e3sconf/20171902033
dos Reis, J. C. et al. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 283, 124580 (2021).
doi: 10.1016/j.jclepro.2020.124580
Pauselli, M. Organic livestock production systems as a model of sustainability development. Ital. J. Anim. Sci. 8, 581–587 (2009).
doi: 10.4081/ijas.2009.s2.581
Zhang, L. X., Yang, Z. F. & Chen, G. Q. Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China. Energy Policy 35, 3843–3855 (2007).
doi: 10.1016/j.enpol.2007.01.022
Zhao, Z., Chen, J., Bai, Y. & Wang, P. Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Phys. Chem. Earth 120, 102907 (2020).
doi: 10.1016/j.pce.2020.102907
Bernués, A. Economía de da sanidad animal en áreas de montaña: Interrelaciones entre la patología y los sistemas de explotación de vacuno y evaluación económica de programas sanitarios. (University of Zaragoza, 1994).
García-Martínez, A., Olaizola, A. & Bernués, A. Trajectories of evolution and drivers of change in European mountain cattle farming systems. Animal 3, 152–165 (2009).
pubmed: 22444182
doi: 10.1017/S1751731108003297
Olaizola, A. Análisis de la Ganadería en un Valle Pirenaico Característico Mediante Técnicas Multivariantes y de Optimización (University of Zaragoza, 1991).
Oteros-Rozas, E. et al. Traditional ecological knowledge among transhumant pastoralists in Mediterranean Spain. Ecol. Soc. 18, 33 (2013).
doi: 10.5751/ES-05597-180333
Agabriel, J. Alimentation des bovins, ovins et caprins. Besoins des animaux - valeurs des aliments. Tables Inra 2007. (Éditions Quae, 2007).
Brown, M. T. & Ulgiati, S. Emergy evaluation of the biosphere and natural capital. Ambio 28, 486–493 (1999).
Artuzo, F. D., Allegretti, G., Santos, O. I. B., da Silva, L. X. & Talamini, E. Emergy unsustainability index for agricultural systems assessment: A proposal based on the laws of thermodynamics. Sci. Total Environ. 759, 143524 (2021).
pubmed: 33248781
doi: 10.1016/j.scitotenv.2020.143524
Odum, H. T. Energy systems concepts and self-organization: A rebuttal. Oecologia 104, 518–522 (1995).
pubmed: 28307668
doi: 10.1007/BF00341350
Ulgiati, S. & Brown, M. T. Labor and services. Emergy Synth. 7 Theory Appl. Emergy Methodol. Proc. 7th Bienn. Emergy Conf. 557–562 (2013).
Brown, M. T., Campbell, D. E., De Vilbiss, C. & Ulgiati, S. The geobiosphere emergy baseline: A synthesis. Ecol. Modell. 339, 92–95 (2016).
doi: 10.1016/j.ecolmodel.2016.03.018
Ortega, E., Anami, M. & Diniz, G. Certification of food products using emegy analysis. in Proceedings of III International Workshop Advances in Energy Studies 227–237 (2002).
Casasús, I. et al. Vegetation dynamics in Mediterranean forest pastures as affected by beef cattle grazing. Agric. Ecosyst. Environ. 121, 365–370 (2007).
doi: 10.1016/j.agee.2006.11.012
Revilla, R., D’Hour, P., Thenard, V. & Petit, M. Pâturage des zones de pinedes par des bovins. in 2. Rencontres autour des Recherches sur les Ruminants 61–64 (1995).
de Leeuw, J. et al. Application of the MODIS MOD 17 Net Primary Production product in grassland carrying capacity assessment. Int. J. Appl. Earth Obs. Geoinf. 78, 66–76 (2019).
Stuart Chapin, F., Matson, P. A. & Vitousek, P. M. Principles of Terrestrial Ecosystem Ecology (Springer, 2011).
doi: 10.1007/978-1-4419-9504-9
Brown, M. T. & Ulgiati, S. Emergy analysis and environmental accounting. Encycl. Energy 2, 329–354 (2004).
doi: 10.1016/B0-12-176480-X/00242-4
European Commision. Farm to Fork Strategy. https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (2020).
Eldesouky, A., Mesias, F. J., Elghannam, A. & Escribano, M. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 200, 28–38 (2018).
doi: 10.1016/j.jclepro.2018.07.279
Alfaro-Arguello, R. et al. Steps toward sustainable ranching: An emergy evaluation of conventional and holistic management in Chiapas, Mexico. Agric. Syst. 103, 639–646 (2010).
doi: 10.1016/j.agsy.2010.08.002
Rótolo, G. C., Rydberg, T., Lieblein, G. & Francis, C. Emergy evaluation of grazing cattle in Argentina’s Pampas. Agric. Ecosyst. Environ. 119, 383–395 (2007).
doi: 10.1016/j.agee.2006.08.011
López-Mársico, L., Altesor, A., Oyarzabal, M., Baldassini, P. & Paruelo, J. M. Grazing increases below-ground biomass and net primary production in a temperate grassland. Plant Soil 392, 155–162 (2015).
doi: 10.1007/s11104-015-2452-2
Spash, C. L. Social ecological economics. In Routledge Handbook of Ecological Economics (ed. Spash, C. L.) (Taylor & Francis, 2017).
doi: 10.4324/9781315679747
dos Reis, B. Q. et al. Economic and environmental assessment using emergy of sheep production in Brazil. Sustainability 13, 11595 (2021).
doi: 10.3390/su132111595
Buller, L. S. et al. Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: Case study assessment in the Pantanal savanna highland, Brazil. Agric. Syst. 137, 206–219 (2015).
doi: 10.1016/j.agsy.2014.11.004
TWI2050 - The World in 2050. Transformations to Achieve the Sustainable Development Goals - Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (2018). doi: https://doi.org/10.22022/TNT/07-2018.15347 .
Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021).
pubmed: 34497394
doi: 10.1038/s41586-021-03821-8
IEA. Net Zero by 2050 A Roadmap for the Global Energy Sector. www.iea.org/t&c/ (2021).
Delannoy, L., Longaretti, P. Y., Murphy, D. J. & Prados, E. Peak oil and the low-carbon energy transition: A net-energy perspective. Appl. Energy 304, 117843 (2021).
doi: 10.1016/j.apenergy.2021.117843
Daily, G. C. et al. The value of nature and the nature of value. Science 289, 395–396 (2000).
pubmed: 10939949
doi: 10.1126/science.289.5478.395
Parrique, T. et al. Decoupling debunked: Evidence and arguments against green growth as a sole strategy for sustainability. Eur. Environ. Bur. 80 (2019).
Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environ. Res. Lett. 15, 065003 (2020).
doi: 10.1088/1748-9326/ab842a
Chen, W. et al. Recent progress on emergy research: A bibliometric analysis. Renew. Sustain. Energy Rev. 73, 1051–1060 (2017).
doi: 10.1016/j.rser.2017.02.041
Hau, J. L. & Bakshi, B. R. Promise and problems of emergy analysis. Ecol. Modell. 178, 215–225 (2004).
doi: 10.1016/j.ecolmodel.2003.12.016
Bernués, A., Tello-García, E., Rodríguez-Ortega, T., Ripoll-Bosch, R. & Casasús, I. Agricultural practices, ecosystem services and sustainability in High Nature Value farmland: Unraveling the perceptions of farmers and nonfarmers. Land Use Policy 59, 130–142 (2016).
doi: 10.1016/j.landusepol.2016.08.033
Odum, H. T. & Odum, E. P. The energetic basis for valuation of ecosystem services. Ecosystems 3, 21–23 (2000).
doi: 10.1007/s100210000005
Yang, Q. et al. Emergy-based ecosystem services valuation and classification management applied to China’s grasslands. Ecosyst. Serv. 42, 101073 (2020).
doi: 10.1016/j.ecoser.2020.101073