Evaluation of different algorithms for automatic segmentation of head-and-neck lymph nodes on CT images.

Atlas-based Automatic segmentation Deap learning Head-and-Neck Lymph Nodes

Journal

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
ISSN: 1879-0887
Titre abrégé: Radiother Oncol
Pays: Ireland
ID NLM: 8407192

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 24 01 2023
revised: 27 07 2023
accepted: 20 08 2023
pubmed: 28 8 2023
medline: 28 8 2023
entrez: 27 8 2023
Statut: ppublish

Résumé

To investigate the performance of 4 atlas-based (multi-ABAS) and 2 deep learning (DL) solutions for head-and-neck (HN) elective nodes (CTVn) automatic segmentation (AS) on CT images. Bilateral CTVn levels of 69 HN cancer patients were delineated on contrast-enhanced planning CT. Ten and 49 patients were used for atlas library and for training a mono-centric DL model, respectively. The remaining 20 patients were used for testing. Additionally, three commercial multi-ABAS methods and one commercial multi-centric DL solution were investigated. Quantitative evaluation was assessed using volumetric Dice Similarity Coefficient (DSC) and 95-percentile Hausdorff distance (HD Overall DL solutions had better DSC and HD Among all methods, the multi-centric DL method showed the highest delineation accuracy and was better rated by experts. Manual corrections remain necessary to avoid elective target underdosage. Finally, AS contours help reducing the workload of manual delineation task.

Identifiants

pubmed: 37634765
pii: S0167-8140(23)89764-X
doi: 10.1016/j.radonc.2023.109870
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

109870

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest This work was performed in the framework of a research cooperation agreement with Elekta AB.

Auteurs

Madalina Costea (M)

Centre Léon Bérard, 28 rue Laennec, LYON 69373 Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.

Alexandra Zlate (A)

MedEuropa, Strada Turnului 8, Brașov 500152, Romania.

Anne-Agathe Serre (AA)

Centre Léon Bérard, 28 rue Laennec, LYON 69373 Cedex 08, France.

Séverine Racadot (S)

Centre Léon Bérard, 28 rue Laennec, LYON 69373 Cedex 08, France.

Thomas Baudier (T)

Centre Léon Bérard, 28 rue Laennec, LYON 69373 Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.

Sylvie Chabaud (S)

Unité de Biostatistique et d'Evaluation des Thérapeutiques, Centre Léon Bérard, Lyon 69373, France.

Vincent Grégoire (V)

Centre Léon Bérard, 28 rue Laennec, LYON 69373 Cedex 08, France.

David Sarrut (D)

Centre Léon Bérard, 28 rue Laennec, LYON 69373 Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.

Marie-Claude Biston (MC)

Centre Léon Bérard, 28 rue Laennec, LYON 69373 Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France. Electronic address: marie-claude.biston@lyon.unicancer.fr.

Classifications MeSH