Proton transport through nanoscale corrugations in two-dimensional crystals.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 10 01 2023
accepted: 23 05 2023
medline: 25 8 2023
pubmed: 24 8 2023
entrez: 23 8 2023
Statut: ppublish

Résumé

Defect-free graphene is impermeable to all atoms

Identifiants

pubmed: 37612394
doi: 10.1038/s41586-023-06247-6
pii: 10.1038/s41586-023-06247-6
pmc: PMC10447238
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

782-786

Informations de copyright

© 2023. The Author(s).

Références

Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).
pubmed: 18630972 doi: 10.1021/nl801457b
Sun, P. Z. et al. Limits on gas impermeability of graphene. Nature 579, 229–232 (2020).
pubmed: 32161387 doi: 10.1038/s41586-020-2070-x
Leenaerts, O., Partoens, B. & Peeters, F. M. Graphene: a perfect nanoballoon. Appl. Phys. Lett. 93, 193107 (2008).
doi: 10.1063/1.3021413
Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).
pubmed: 23042491 doi: 10.1038/nnano.2012.162
Sun, P. Z. et al. Exponentially selective molecular sieving through angstrom pores. Nat. Commun. 12, 7170 (2021).
pubmed: 34887395 pmcid: 8660907 doi: 10.1038/s41467-021-27347-9
Mogg, L. et al. Perfect proton selectivity in ion transport through two-dimensional crystals. Nat. Commun. 10, 4243 (2019).
pubmed: 31534140 pmcid: 6751181 doi: 10.1038/s41467-019-12314-2
Griffin, E. et al. Proton and Li-ion permeation through graphene with eight-atom-ring defects. ACS Nano 14, 7280–7286 (2020).
pubmed: 32427466 doi: 10.1021/acsnano.0c02496
Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).
pubmed: 25470058 doi: 10.1038/nature14015
Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016).
pubmed: 26721995 doi: 10.1126/science.aac9726
Miao, M., Nardelli, M. B., Wang, Q. & Liu, Y. First principles study of the permeability of graphene to hydrogen atoms. Phys. Chem. Chem. Phys. 15, 16132–16137 (2013).
pubmed: 23986179 doi: 10.1039/c3cp52318g
Poltavsky, I., Zheng, L., Mortazavi, M. & Tkatchenko, A. Quantum tunneling of thermal protons through pristine graphene. J. Chem. Phys. 148, 204707 (2018).
pubmed: 29865849 doi: 10.1063/1.5024317
Mazzuca, J. W. & Haut, N. K. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes. J. Chem. Phys. 148, 224301 (2018).
pubmed: 29907032 doi: 10.1063/1.5027821
Feng, Y. et al. Hydrogenation facilitates proton transfer through two-dimensional honeycomb crystals. J. Phys. Chem. Lett. 8, 6009–6014 (2017).
pubmed: 29185752 doi: 10.1021/acs.jpclett.7b02820
Kroes, J., Fasolino, A. & Katsnelson, M. Density functional based simulations of proton permeation of graphene and hexagonal boron nitride. Phys. Chem. Chem. Phys. 19, 5813–5817 (2017).
pubmed: 28177003 doi: 10.1039/C6CP08923B
Achtyl, J. L. et al. Aqueous proton transfer across single-layer graphene. Nat. Commun. 6, 6539 (2015).
pubmed: 25781149 doi: 10.1038/ncomms7539
Walker, M. I., Braeuninger-Weimer, P., Weatherup, R. S., Hofmann, S. & Keyser, U. F. Measuring the proton selectivity of graphene membranes. Appl. Phys. Lett. 107, 213104 (2015).
doi: 10.1063/1.4936335
Bentley, C. L., Kang, M., Bukola, S., Creager, S. E. & Unwin, P. R. High-resolution ion-flux imaging of proton transport through graphene|Nafion membranes. ACS Nano 16, 5233–5245 (2022).
pubmed: 35286810 pmcid: 9047657 doi: 10.1021/acsnano.1c05872
Wang, W. L. & Kaxiras, E. Graphene hydrate: theoretical prediction of a new insulating form of graphene. New J. Phys. 12, 125012 (2010).
doi: 10.1088/1367-2630/12/12/125012
Bartolomei, M., Hernández, M. I., Campos-Martínez, J. & Hernández-Lamoneda, R. Graphene multi-protonation: a cooperative mechanism for proton permeation. Carbon 144, 724–730 (2019).
doi: 10.1016/j.carbon.2018.12.086
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
pubmed: 21209615 doi: 10.1038/nature09718
Lee, G. H. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073–1076 (2013).
pubmed: 23723231 doi: 10.1126/science.1235126
Gao, L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).
pubmed: 22426220 doi: 10.1038/ncomms1702
Murakami, Y. Theory of Elasticity and Stress Concentration (Wiley, 2017).
Deng, S. & Berry, V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016).
doi: 10.1016/j.mattod.2015.10.002
Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).
pubmed: 17330039 doi: 10.1038/nature05545
Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).
doi: 10.1016/j.ssc.2007.02.047
Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007).
pubmed: 17891144 doi: 10.1038/nmat2011
Kosmala, T. et al. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 4, 850–859 (2021).
doi: 10.1038/s41929-021-00682-2
Cai, J. et al. Wien effect in interfacial water dissociation through proton-permeable graphene electrodes. Nat. Commun. 13, 5776 (2022).
pubmed: 36182944 pmcid: 9526707 doi: 10.1038/s41467-022-33451-1
Mertens, S. F. L. et al. Switching stiction and adhesion of a liquid on a solid. Nature 534, 676–679 (2016).
pubmed: 27357755 doi: 10.1038/nature18275
Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).
pubmed: 24844319 doi: 10.1021/nl5006542
Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011).
pubmed: 21360804 doi: 10.1002/smll.201001628
Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).
pubmed: 23552117 doi: 10.1038/nnano.2013.46
Chen, C. H. et al. Voltammetric scanning electrochemical cell microscopy: dynamic imaging of hydrazine electro-oxidation on platinum electrodes. Anal. Chem. 87, 5782–5789 (2015).
pubmed: 25942527 doi: 10.1021/acs.analchem.5b00988
Bentley, C. L. et al. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS
pubmed: 28989686 pmcid: 5627349 doi: 10.1039/C7SC02545A
Bentley, C. L., Perry, D. & Unwin, P. R. Stability and placement of Ag/AgCl quasi-reference counter electrodes in confined electrochemical cells. Anal. Chem. 90, 7700–7707 (2018).
pubmed: 29808685 doi: 10.1021/acs.analchem.8b01588
Daviddi, E. et al. Nanoscale visualization and multiscale electrochemical analysis of conductive polymer electrodes. ACS Nano 13, 13271–13284 (2019).
pubmed: 31674763 doi: 10.1021/acsnano.9b06302
Ustarroz, J., Kang, M., Bullions, E. & Unwin, P. R. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events. Chem. Sci. 8, 1841–1853 (2017).
pubmed: 28553474 doi: 10.1039/C6SC04483B
Wahab, O. J., Kang, M. & Unwin, P. R. Scanning electrochemical cell microscopy: a natural technique for single entity electrochemistry. Curr. Opin. Electrochem. 22, 120–128 (2020).
doi: 10.1016/j.coelec.2020.04.018
Wahab, O. J., Kang, M., Meloni, G. N., Daviddi, E. & Unwin, P. R. Nanoscale visualization of electrochemical activity at indium tin oxide electrodes. Anal. Chem. 94, 4729–4736 (2022).
pubmed: 35255211 pmcid: 9007413 doi: 10.1021/acs.analchem.1c05168
Ebejer, N. et al. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6, 329–351 (2013).
doi: 10.1146/annurev-anchem-062012-092650
Snowden, M. E. et al. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Anal. Chem. 84, 2483–2491 (2012).
pubmed: 22279955 doi: 10.1021/ac203195h
Xu, X. et al. The new era of high-throughput nanoelectrochemistry. Anal. Chem. 95, 319–356 (2023).
pubmed: 36625121 pmcid: 9835065 doi: 10.1021/acs.analchem.2c05105
Mariano, R. G. et al. Microstructural origin of locally enhanced CO
pubmed: 33737727 doi: 10.1038/s41563-021-00958-9
Shin, Y. et al. Raman spectroscopy of highly pressurized graphene membranes. Appl. Phys. Lett. 108, 221907 (2016).
Zan, R. et al. Scanning tunnelling microscopy of suspended graphene. Nanoscale 4, 3065–3068 (2012).
pubmed: 22495597 doi: 10.1039/c2nr30162h
Edmondson, S., Frieda, K., Comrie, J. E., Onck, P. R. & Huck, W. T. S. Buckling in quasi-2D polymers. Adv. Mater. 18, 724–728 (2006).
Yang, Q. et al. Capillary condensation under atomic-scale confinement. Nature 588, 250–253 (2020).
pubmed: 33299189 doi: 10.1038/s41586-020-2978-1
Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).
pubmed: 21696186 doi: 10.1021/nl201432g
Lozada-Hidalgo, M. et al. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat. Commun. 8, 15215 (2017).
pubmed: 28485380 pmcid: 5436102 doi: 10.1038/ncomms15215
Kidambi, P. R., Chaturvedi, P. & Moehring, N. K. Subatomic species transport through atomically thin membranes: present and future applications. Science 374, eabd7687 (2021).
pubmed: 34735245 doi: 10.1126/science.abd7687
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
doi: 10.1103/PhysRevB.50.17953
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328 doi: 10.1103/PhysRevLett.77.3865
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

Auteurs

O J Wahab (OJ)

Department of Chemistry, University of Warwick, Coventry, UK.

E Daviddi (E)

Department of Chemistry, University of Warwick, Coventry, UK.

B Xin (B)

Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
National Graphene Institute, The University of Manchester, Manchester, UK.

P Z Sun (PZ)

Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
National Graphene Institute, The University of Manchester, Manchester, UK.

E Griffin (E)

Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
National Graphene Institute, The University of Manchester, Manchester, UK.

A W Colburn (AW)

Department of Chemistry, University of Warwick, Coventry, UK.

D Barry (D)

Department of Physics and Astronomy, The University of Manchester, Manchester, UK.

M Yagmurcukardes (M)

Department of Photonics, Izmir Institute of Technology, Urla, Turkey.

F M Peeters (FM)

Departement Fysica, Universiteit Antwerpen, Antwerp, Belgium.
Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Brazil.

A K Geim (AK)

Department of Physics and Astronomy, The University of Manchester, Manchester, UK. a.k.geim@manchester.ac.uk.
National Graphene Institute, The University of Manchester, Manchester, UK. a.k.geim@manchester.ac.uk.

M Lozada-Hidalgo (M)

Department of Physics and Astronomy, The University of Manchester, Manchester, UK. marcelo.lozadahidalgo@manchester.ac.uk.
National Graphene Institute, The University of Manchester, Manchester, UK. marcelo.lozadahidalgo@manchester.ac.uk.

P R Unwin (PR)

Department of Chemistry, University of Warwick, Coventry, UK. p.r.unwin@warwick.ac.uk.

Classifications MeSH