Pulmonary MRI with ultra-short TE using single- and dual-echo methods: comparison of capability for quantitative differentiation of non- or minimally invasive adenocarcinomas from other lung cancers with that of standard-dose thin-section CT.
Early lung cancer
Ground glass
Lung
MRI
Staging
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
15 Aug 2023
15 Aug 2023
Historique:
received:
10
03
2023
accepted:
25
06
2023
revised:
05
06
2023
medline:
15
8
2023
pubmed:
15
8
2023
entrez:
14
8
2023
Statut:
aheadofprint
Résumé
The purpose of this study was thus to compare capabilities for quantitative differentiation of non- and minimally invasive adenocarcinomas from other of pulmonary MRIs with ultra-short TE (UTE) obtained with single- and dual-echo techniques (UTE-MRI Ninety pathologically diagnosed stage IA lung cancer patients who underwent thin-section standard-dose CT, UTE-MRI Each index showed significant differences between the two groups (p < 0.0001). Specificities and accuracies of solid D Pulmonary MRI with UTE is considered at least as valuable as thin-section CT for quantitative differentiation of non- and minimally invasive adenocarcinomas from other stage IA lung cancers. Pulmonary MRI with UTE's capability for quantitative differentiation of non- and minimally invasive adenocarcinomas from other lung cancers in stage IA lung cancer patients is equal or superior to that of thin-section CT. • Correlations were excellent for pathologically examined nodules with the largest dimensions (D
Identifiants
pubmed: 37580601
doi: 10.1007/s00330-023-10105-4
pii: 10.1007/s00330-023-10105-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 18K07675
Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 18K07675
Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 20K08037
Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 20K08037
Informations de copyright
© 2023. The Author(s), under exclusive licence to European Society of Radiology.
Références
Suzuki K (2017) Whack-a-mole strategy for multifocal ground glass opacities of the lung. J Thorac Dis. 9:S201–S207. https://doi.org/10.21037/jtd.2017.04.03
doi: 10.21037/jtd.2017.04.03
pubmed: 28446985
pmcid: 5392542
Okada M, Koike T, Higashiyama M, Yamato Y, Kodama K, Tsubota N (2006) Radical sublobar resection for small-sized non-small cell lung cancer: a multicenter study. J Thorac Cardiovasc Surg 132:769–775. https://doi.org/10.1016/j.jtcvs.2006.02.063
doi: 10.1016/j.jtcvs.2006.02.063
pubmed: 17000286
Suzuki K, Koike T, Asakawa T, Japan Lung Cancer Surgical Study Group (JCOG LCSSG) et al (2011) A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol 6:751–6. https://doi.org/10.1097/JTO.0b013e31821038ab
doi: 10.1097/JTO.0b013e31821038ab
pubmed: 21325976
Asamura H, Hishida T, Suzuki K, Japan Clinical Oncology Group Lung Cancer Surgical Study Group et al (2013) Radiographically determined noninvasive adenocarcinoma of the lung: survival outcomes of Japan Clinical Oncology Group 0201. J Thorac Cardiovasc Surg 146:24–30. https://doi.org/10.1016/j.jtcvs.2012.12.047
doi: 10.1016/j.jtcvs.2012.12.047
pubmed: 23398645
Suzuki K, Watanabe S, Mizusawa J, Japan Lung Cancer Surgical Study Group (JCOG LCSSG) et al (2015) Predictors of non-neoplastic lesions in lung tumours showing ground-glass opacity on thin-section computed tomography based on a multi-institutional prospective study†. Interact Cardiovasc Thorac Surg. 21:218–223. https://doi.org/10.1093/icvts/ivv124
doi: 10.1093/icvts/ivv124
pubmed: 25987718
Saji H, Okada M, Tsuboi M, West Japan Oncology Group and Japan Clinical Oncology Group et al (2022) Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 399:1607–1617. https://doi.org/10.1016/S0140-6736(21)02333-3
doi: 10.1016/S0140-6736(21)02333-3
pubmed: 35461558
Revel MP, Mannes I, Benzakoun J et al (2018) subsolid lung nodule classification: a CT criterion for improving interobserver agreement. Radiology 286:316–325. https://doi.org/10.1148/radiol.2017170044
doi: 10.1148/radiol.2017170044
pubmed: 28796590
Yanagawa M, Kusumoto M, Johkoh T, Investigators of JSTR Lung Cancer Working Group et al (2018) Radiologic-pathologic correlation of solid portions on thin-section CT images in lung adenocarcinoma: a multicenter study. Clin Lung Cancer. 19:e303–e312. https://doi.org/10.1016/j.cllc.2017.12.005
doi: 10.1016/j.cllc.2017.12.005
pubmed: 29307591
Cui X, Fan S, Heuvelmans MA et al (2020) Optimization of CT windowing for diagnosing invasiveness of adenocarcinoma presenting as sub-solid nodules. Eur J Radiol. 128:108981. https://doi.org/10.1016/j.ejrad.2020.108981
doi: 10.1016/j.ejrad.2020.108981
pubmed: 32371183
Kanamoto Y, Sakao Y, Kuroda H et al (2021) Selection of pathological N0 (pN0) in clinical IA (cIA) lung adenocarcinoma by imaging findings of the main tumor. Ann Thorac Cardiovasc Surg 27:230–236. https://doi.org/10.5761/atcs.oa.20-00240
doi: 10.5761/atcs.oa.20-00240
pubmed: 33342931
Ohno Y, Koyama H, Yoshikawa T et al (2011) T2* measurements of 3-T MRI with ultrashort TEs: capabilities of pulmonary function assessment and clinical stage classification in smokers. AJR Am J Roentgenol 197:W279-285. https://doi.org/10.2214/AJR.10.5350
doi: 10.2214/AJR.10.5350
pubmed: 21785054
Ohno Y, Nishio M, Koyama H et al (2013) Pulmonary MR imaging with ultra-short TEs: utility for disease severity assessment of connective tissue disease patients. Eur J Radiol 82:1359–1365. https://doi.org/10.1016/j.ejrad.2013.02.031
doi: 10.1016/j.ejrad.2013.02.031
pubmed: 23523024
Ohno Y, Nishio M, Koyama H et al (2014) Pulmonary 3 T MRI with ultrashort TEs: influence of ultrashort echo time interval on pulmonary functional and clinical stage assessments of smokers. J Magn Reson Imaging 39:988–997. https://doi.org/10.1002/jmri.24232
doi: 10.1002/jmri.24232
pubmed: 24123342
Ohno Y, Koyama H, Yoshikawa T et al (2016) Pulmonary high-resolution ultrashort TE MR imaging: comparison with thin-section standard- and low-dose computed tomography for the assessment of pulmonary parenchyma diseases. J Magn Reson Imaging 43:512–532. https://doi.org/10.1002/jmri.25008
doi: 10.1002/jmri.25008
pubmed: 26223818
Ohno Y, Koyama H, Yoshikawa T et al (2017) Standard-, reduced-, and no-dose thin-section radiologic examinations: comparison of capability for nodule detection and nodule type assessment in patients suspected of having pulmonary nodules. Radiology 284:562–573. https://doi.org/10.1148/radiol.2017161037
doi: 10.1148/radiol.2017161037
pubmed: 28263700
Wielpütz MO, Lee HY, Koyama H et al (2018) Morphologic characterization of pulmonary nodules with ultrashort TE MRI at 3T. AJR Am J Roentgenol 210:1216–1225. https://doi.org/10.2214/AJR.17.18961
doi: 10.2214/AJR.17.18961
pubmed: 29547055
Ohno Y, Yui M, Chen Y, Kishida Y, Seki S, Yoshikawa T (2019) Gadolinium-based blood volume mapping from mri With ultrashort TE versus CT and SPECT for predicting postoperative lung function in patients with non-small cell lung cancer. AJR Am J Roentgenol 212:57–66. https://doi.org/10.2214/AJR.18.20095
doi: 10.2214/AJR.18.20095
pubmed: 30422708
Ohno Y, Takenaka D, Yoshikawa T et al (2022) Efficacy of ultrashort echo time pulmonary MRI for lung nodule detection and lung-RADS classification. Radiology 302:697–706. https://doi.org/10.1148/radiol.211254
doi: 10.1148/radiol.211254
pubmed: 34846203
Hatabu H, Ohno Y, Gefter WB, Fleischner Society et al (2020) Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: Fleischner Society Position Paper. Radiology. 297:286–301. https://doi.org/10.1148/radiol.2020201138
doi: 10.1148/radiol.2020201138
pubmed: 32870136
Schiebler ML, Parraga G, Gefter WB et al (2021) Synopsis from expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: Fleischner Society Position Paper. Chest 159:492–495. https://doi.org/10.1016/j.chest.2020.09.075
doi: 10.1016/j.chest.2020.09.075
pubmed: 32941864
Ohno Y, Seo JB, Parraga G et al (2021) Pulmonary functional imaging: Part 1-State-of-the-art technical and physiologic underpinnings. Radiology 299:508–523. https://doi.org/10.1148/radiol.2021203711
doi: 10.1148/radiol.2021203711
pubmed: 33825513
Gefter WB, Lee KS, Schiebler ML et al (2021) Pulmonary functional imaging: Part 2-State-of-the-art clinical applications and opportunities for improved patient care. Radiology 299:524–538. https://doi.org/10.1148/radiol.2021204033
doi: 10.1148/radiol.2021204033
pubmed: 33847518
Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310
doi: 10.1016/S0140-6736(86)90837-8
pubmed: 2868172
Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1177/096228029900800204
doi: 10.1177/096228029900800204
pubmed: 10501650
Ohno Y, Hatabu H, Takenaka D, Adachi S, Kono M, Sugimura K (2002) Solitary pulmonary nodules: potential role of dynamic MR imaging in management initial experience. Radiology 224:503–511. https://doi.org/10.1148/radiol.2242010992
doi: 10.1148/radiol.2242010992
pubmed: 12147849
Ohno Y, Koyama H, Nogami M et al (2007) STIR turbo SE MR imaging vs. coregistered FDG-PET/CT: quantitative and qualitative assessment of N-stage in non-small-cell lung cancer patients. J Magn Reson Imaging 26:1071–1080. https://doi.org/10.1002/jmri.21106
doi: 10.1002/jmri.21106
pubmed: 17896365
Ohno Y, Koyama H, Yoshikawa T et al (2012) Contrast-enhanced multidetector-row computed tomography vs. time-resolved magnetic resonance angiography vs. contrast-enhanced perfusion MRI: assessment of treatment response by patients with inoperable chronic thromboembolic pulmonary hypertension. J Magn Reson Imaging 36:612–623. https://doi.org/10.1002/jmri.23680
doi: 10.1002/jmri.23680
pubmed: 22566188
Hsu PK, Huang HC, Hsieh CC et al (2007) Effect of formalin fixation on tumor size determination in stage I non-small cell lung cancer. Ann Thorac Surg 84:1825–1829. https://doi.org/10.1016/j.athoracsur.2007.07.016
doi: 10.1016/j.athoracsur.2007.07.016
pubmed: 18036892
Goldstein NS, Soman A, Sacksner J (1999) Disparate surgical margin lengths of colorectal resection specimens between in vivo and in vitro measurements. The effects of surgical resection and formalin fixation on organ shrinkage. Am J Clin Pathol 111:349–351. https://doi.org/10.1093/ajcp/111.3.349
doi: 10.1093/ajcp/111.3.349
pubmed: 10078110
Pritt B, Tessitore JJ, Weaver DL, Blaszyk H (2005) The effect of tissue fixation and processing on breast cancer size. Hum Pathol 36:756–760. https://doi.org/10.1016/j.humpath.2005.04.018
doi: 10.1016/j.humpath.2005.04.018
pubmed: 16084944