Pulmonary MRI with ultra-short TE using single- and dual-echo methods: comparison of capability for quantitative differentiation of non- or minimally invasive adenocarcinomas from other lung cancers with that of standard-dose thin-section CT.

Early lung cancer Ground glass Lung MRI Staging

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
15 Aug 2023
Historique:
received: 10 03 2023
accepted: 25 06 2023
revised: 05 06 2023
medline: 15 8 2023
pubmed: 15 8 2023
entrez: 14 8 2023
Statut: aheadofprint

Résumé

The purpose of this study was thus to compare capabilities for quantitative differentiation of non- and minimally invasive adenocarcinomas from other of pulmonary MRIs with ultra-short TE (UTE) obtained with single- and dual-echo techniques (UTE-MRI Ninety pathologically diagnosed stage IA lung cancer patients who underwent thin-section standard-dose CT, UTE-MRI Each index showed significant differences between the two groups (p < 0.0001). Specificities and accuracies of solid D Pulmonary MRI with UTE is considered at least as valuable as thin-section CT for quantitative differentiation of non- and minimally invasive adenocarcinomas from other stage IA lung cancers. Pulmonary MRI with UTE's capability for quantitative differentiation of non- and minimally invasive adenocarcinomas from other lung cancers in stage IA lung cancer patients is equal or superior to that of thin-section CT. • Correlations were excellent for pathologically examined nodules with the largest dimensions (D

Identifiants

pubmed: 37580601
doi: 10.1007/s00330-023-10105-4
pii: 10.1007/s00330-023-10105-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 18K07675
Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 18K07675
Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 20K08037
Organisme : Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
ID : 20K08037

Informations de copyright

© 2023. The Author(s), under exclusive licence to European Society of Radiology.

Références

Suzuki K (2017) Whack-a-mole strategy for multifocal ground glass opacities of the lung. J Thorac Dis. 9:S201–S207. https://doi.org/10.21037/jtd.2017.04.03
doi: 10.21037/jtd.2017.04.03 pubmed: 28446985 pmcid: 5392542
Okada M, Koike T, Higashiyama M, Yamato Y, Kodama K, Tsubota N (2006) Radical sublobar resection for small-sized non-small cell lung cancer: a multicenter study. J Thorac Cardiovasc Surg 132:769–775. https://doi.org/10.1016/j.jtcvs.2006.02.063
doi: 10.1016/j.jtcvs.2006.02.063 pubmed: 17000286
Suzuki K, Koike T, Asakawa T, Japan Lung Cancer Surgical Study Group (JCOG LCSSG) et al (2011) A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol 6:751–6. https://doi.org/10.1097/JTO.0b013e31821038ab
doi: 10.1097/JTO.0b013e31821038ab pubmed: 21325976
Asamura H, Hishida T, Suzuki K, Japan Clinical Oncology Group Lung Cancer Surgical Study Group et al (2013) Radiographically determined noninvasive adenocarcinoma of the lung: survival outcomes of Japan Clinical Oncology Group 0201. J Thorac Cardiovasc Surg 146:24–30. https://doi.org/10.1016/j.jtcvs.2012.12.047
doi: 10.1016/j.jtcvs.2012.12.047 pubmed: 23398645
Suzuki K, Watanabe S, Mizusawa J, Japan Lung Cancer Surgical Study Group (JCOG LCSSG) et al (2015) Predictors of non-neoplastic lesions in lung tumours showing ground-glass opacity on thin-section computed tomography based on a multi-institutional prospective study†. Interact Cardiovasc Thorac Surg. 21:218–223. https://doi.org/10.1093/icvts/ivv124
doi: 10.1093/icvts/ivv124 pubmed: 25987718
Saji H, Okada M, Tsuboi M, West Japan Oncology Group and Japan Clinical Oncology Group et al (2022) Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 399:1607–1617. https://doi.org/10.1016/S0140-6736(21)02333-3
doi: 10.1016/S0140-6736(21)02333-3 pubmed: 35461558
Revel MP, Mannes I, Benzakoun J et al (2018) subsolid lung nodule classification: a CT criterion for improving interobserver agreement. Radiology 286:316–325. https://doi.org/10.1148/radiol.2017170044
doi: 10.1148/radiol.2017170044 pubmed: 28796590
Yanagawa M, Kusumoto M, Johkoh T, Investigators of JSTR Lung Cancer Working Group et al (2018) Radiologic-pathologic correlation of solid portions on thin-section CT images in lung adenocarcinoma: a multicenter study. Clin Lung Cancer. 19:e303–e312. https://doi.org/10.1016/j.cllc.2017.12.005
doi: 10.1016/j.cllc.2017.12.005 pubmed: 29307591
Cui X, Fan S, Heuvelmans MA et al (2020) Optimization of CT windowing for diagnosing invasiveness of adenocarcinoma presenting as sub-solid nodules. Eur J Radiol. 128:108981. https://doi.org/10.1016/j.ejrad.2020.108981
doi: 10.1016/j.ejrad.2020.108981 pubmed: 32371183
Kanamoto Y, Sakao Y, Kuroda H et al (2021) Selection of pathological N0 (pN0) in clinical IA (cIA) lung adenocarcinoma by imaging findings of the main tumor. Ann Thorac Cardiovasc Surg 27:230–236. https://doi.org/10.5761/atcs.oa.20-00240
doi: 10.5761/atcs.oa.20-00240 pubmed: 33342931
Ohno Y, Koyama H, Yoshikawa T et al (2011) T2* measurements of 3-T MRI with ultrashort TEs: capabilities of pulmonary function assessment and clinical stage classification in smokers. AJR Am J Roentgenol 197:W279-285. https://doi.org/10.2214/AJR.10.5350
doi: 10.2214/AJR.10.5350 pubmed: 21785054
Ohno Y, Nishio M, Koyama H et al (2013) Pulmonary MR imaging with ultra-short TEs: utility for disease severity assessment of connective tissue disease patients. Eur J Radiol 82:1359–1365. https://doi.org/10.1016/j.ejrad.2013.02.031
doi: 10.1016/j.ejrad.2013.02.031 pubmed: 23523024
Ohno Y, Nishio M, Koyama H et al (2014) Pulmonary 3 T MRI with ultrashort TEs: influence of ultrashort echo time interval on pulmonary functional and clinical stage assessments of smokers. J Magn Reson Imaging 39:988–997. https://doi.org/10.1002/jmri.24232
doi: 10.1002/jmri.24232 pubmed: 24123342
Ohno Y, Koyama H, Yoshikawa T et al (2016) Pulmonary high-resolution ultrashort TE MR imaging: comparison with thin-section standard- and low-dose computed tomography for the assessment of pulmonary parenchyma diseases. J Magn Reson Imaging 43:512–532. https://doi.org/10.1002/jmri.25008
doi: 10.1002/jmri.25008 pubmed: 26223818
Ohno Y, Koyama H, Yoshikawa T et al (2017) Standard-, reduced-, and no-dose thin-section radiologic examinations: comparison of capability for nodule detection and nodule type assessment in patients suspected of having pulmonary nodules. Radiology 284:562–573. https://doi.org/10.1148/radiol.2017161037
doi: 10.1148/radiol.2017161037 pubmed: 28263700
Wielpütz MO, Lee HY, Koyama H et al (2018) Morphologic characterization of pulmonary nodules with ultrashort TE MRI at 3T. AJR Am J Roentgenol 210:1216–1225. https://doi.org/10.2214/AJR.17.18961
doi: 10.2214/AJR.17.18961 pubmed: 29547055
Ohno Y, Yui M, Chen Y, Kishida Y, Seki S, Yoshikawa T (2019) Gadolinium-based blood volume mapping from mri With ultrashort TE versus CT and SPECT for predicting postoperative lung function in patients with non-small cell lung cancer. AJR Am J Roentgenol 212:57–66. https://doi.org/10.2214/AJR.18.20095
doi: 10.2214/AJR.18.20095 pubmed: 30422708
Ohno Y, Takenaka D, Yoshikawa T et al (2022) Efficacy of ultrashort echo time pulmonary MRI for lung nodule detection and lung-RADS classification. Radiology 302:697–706. https://doi.org/10.1148/radiol.211254
doi: 10.1148/radiol.211254 pubmed: 34846203
Hatabu H, Ohno Y, Gefter WB, Fleischner Society et al (2020) Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: Fleischner Society Position Paper. Radiology. 297:286–301. https://doi.org/10.1148/radiol.2020201138
doi: 10.1148/radiol.2020201138 pubmed: 32870136
Schiebler ML, Parraga G, Gefter WB et al (2021) Synopsis from expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: Fleischner Society Position Paper. Chest 159:492–495. https://doi.org/10.1016/j.chest.2020.09.075
doi: 10.1016/j.chest.2020.09.075 pubmed: 32941864
Ohno Y, Seo JB, Parraga G et al (2021) Pulmonary functional imaging: Part 1-State-of-the-art technical and physiologic underpinnings. Radiology 299:508–523. https://doi.org/10.1148/radiol.2021203711
doi: 10.1148/radiol.2021203711 pubmed: 33825513
Gefter WB, Lee KS, Schiebler ML et al (2021) Pulmonary functional imaging: Part 2-State-of-the-art clinical applications and opportunities for improved patient care. Radiology 299:524–538. https://doi.org/10.1148/radiol.2021204033
doi: 10.1148/radiol.2021204033 pubmed: 33847518
Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310
doi: 10.1016/S0140-6736(86)90837-8 pubmed: 2868172
Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1177/096228029900800204
doi: 10.1177/096228029900800204 pubmed: 10501650
Ohno Y, Hatabu H, Takenaka D, Adachi S, Kono M, Sugimura K (2002) Solitary pulmonary nodules: potential role of dynamic MR imaging in management initial experience. Radiology 224:503–511. https://doi.org/10.1148/radiol.2242010992
doi: 10.1148/radiol.2242010992 pubmed: 12147849
Ohno Y, Koyama H, Nogami M et al (2007) STIR turbo SE MR imaging vs. coregistered FDG-PET/CT: quantitative and qualitative assessment of N-stage in non-small-cell lung cancer patients. J Magn Reson Imaging 26:1071–1080. https://doi.org/10.1002/jmri.21106
doi: 10.1002/jmri.21106 pubmed: 17896365
Ohno Y, Koyama H, Yoshikawa T et al (2012) Contrast-enhanced multidetector-row computed tomography vs. time-resolved magnetic resonance angiography vs. contrast-enhanced perfusion MRI: assessment of treatment response by patients with inoperable chronic thromboembolic pulmonary hypertension. J Magn Reson Imaging 36:612–623. https://doi.org/10.1002/jmri.23680
doi: 10.1002/jmri.23680 pubmed: 22566188
Hsu PK, Huang HC, Hsieh CC et al (2007) Effect of formalin fixation on tumor size determination in stage I non-small cell lung cancer. Ann Thorac Surg 84:1825–1829. https://doi.org/10.1016/j.athoracsur.2007.07.016
doi: 10.1016/j.athoracsur.2007.07.016 pubmed: 18036892
Goldstein NS, Soman A, Sacksner J (1999) Disparate surgical margin lengths of colorectal resection specimens between in vivo and in vitro measurements. The effects of surgical resection and formalin fixation on organ shrinkage. Am J Clin Pathol 111:349–351. https://doi.org/10.1093/ajcp/111.3.349
doi: 10.1093/ajcp/111.3.349 pubmed: 10078110
Pritt B, Tessitore JJ, Weaver DL, Blaszyk H (2005) The effect of tissue fixation and processing on breast cancer size. Hum Pathol 36:756–760. https://doi.org/10.1016/j.humpath.2005.04.018
doi: 10.1016/j.humpath.2005.04.018 pubmed: 16084944

Auteurs

Yoshiharu Ohno (Y)

Department of Diagnostic Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan. yohno@fujita-hu.ac.jp.
Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan. yohno@fujita-hu.ac.jp.

Masao Yui (M)

Canon Medical Systems Corporation, Otawara, Tochigi, Japan.

Kaori Yamamoto (K)

Canon Medical Systems Corporation, Otawara, Tochigi, Japan.

Masato Ikedo (M)

Canon Medical Systems Corporation, Otawara, Tochigi, Japan.

Yuka Oshima (Y)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.

Nayu Hamabuchi (N)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.

Satomu Hanamatsu (S)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.

Hiroyuki Nagata (H)

Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

Takahiro Ueda (T)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.

Hirotaka Ikeda (H)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.

Daisuke Takenaka (D)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan.

Takeshi Yoshikawa (T)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan.

Yoshiyuki Ozawa (Y)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
Department of Radiology, Nagoya City University Graduate School of Medicine, Nagoya, Aichi, Japan.

Hiroshi Toyama (H)

Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.

Classifications MeSH