Evaluation of left ventricular and left atrial volumetric function from native MR multislice 4D flow magnitude data.
Cardiovascular system
Diagnostic imaging
Heart function tests
Magnetic resonance imaging
Validation study
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
15 Aug 2023
15 Aug 2023
Historique:
received:
08
05
2023
accepted:
12
06
2023
revised:
08
05
2023
medline:
15
8
2023
pubmed:
15
8
2023
entrez:
14
8
2023
Statut:
aheadofprint
Résumé
To assess the feasibility, precision, and accuracy of left ventricular (LV) and left atrial (LA) volumetric function evaluation from native magnetic resonance (MR) multislice 4D flow magnitude images. In this prospective study, 60 subjects without signs or symptoms of heart failure underwent 3T native cardiac MR multislice 4D flow and bSSFP-cine realtime imaging. LV and LA volumetric function parameters were evaluated from 4D flow magnitude (4D flow-cine) and bSSFP-cine data using standard software to obtain end-diastolic volume (EDV), end-systolic volume (ESV), ejection-fraction (EF), stroke-volume (SV), LV muscle mass (LVM), LA maximum volume, LA minimum volume, and LA total ejection fraction (LATEF). Stroke volumes derived from both imaging methods were further compared to 4D pulmonary artery flow-derived net forward volumes (NFV). Methods were compared by correlation and Bland-Altman analysis. Volumetric function parameters from 4D flow-cine and bSSFP-cine showed high to very high correlations (r = 0.83-0.98). SV, LA volumes and LATEF did not differ between methods. LV end-diastolic and end-systolic volumes were slightly underestimated (EDV: -2.9 ± 5.8 mL; ESV: -2.3 ± 3.8 mL), EF was slightly overestimated (EF: 0.9 ± 2.6%), and LV mass was considerably overestimated (LVM: 39.0 ± 11.4 g) by 4D flow-cine imaging. SVs from both methods correlated very highly with NFV (r = 0.91 in both cases) and did not differ from NFV. Native multislice 4D flow magnitude data allows precise evaluation of LV and LA volumetric parameters; however, apart from SV, LV volumetric parameters demonstrate bias and need to be referred to their respective normal values. Volumetric function assessment from native multislice 4D flow magnitude images can be performed with routinely used clinical software, facilitating the application of 4D flow as a one-stop-shop functional cardiac MR exam, providing consistent, simultaneously acquired, volume and flow data. • Native multislice 4D flow imaging allows evaluation of volumetric left ventricular and atrial function parameters. • Left ventricular and left atrial function parameters derived from native multislice 4D flow data correlate highly with corresponding standard cine-derived parameters. • Multislice 4D flow-derived volumetric stroke volume and net forward volume do not differ.
Identifiants
pubmed: 37580598
doi: 10.1007/s00330-023-10017-3
pii: 10.1007/s00330-023-10017-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Oesterreichische Nationalbank
ID : 17934
Informations de copyright
© 2023. The Author(s).
Références
Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER et al (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29. https://doi.org/10.1186/s12968-015-0111-7
doi: 10.1186/s12968-015-0111-7
pubmed: 25928314
pmcid: 4403942
Maceira A, Prasad S, Khan M, Pennell D (2006) Normalized Left Ventricular Systolic and Diastolic Function by Steady State Free Precession Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson 8:417–426. https://doi.org/10.1080/10976640600572889
doi: 10.1080/10976640600572889
pubmed: 16755827
Schulz-Menger J, Bluemke DA, Bremerich J et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson 22:19. https://doi.org/10.1186/s12968-020-00610-6
doi: 10.1186/s12968-020-00610-6
pubmed: 32160925
pmcid: 7066763
Qin JJ, Indja B, Gholipour A et al (2022) Evaluation of Left Ventricular Function Using Four-Dimensional Flow Cardiovascular Magnetic Resonance: A Systematic Review. J Cardiovasc Dev Dis 9:304. https://doi.org/10.3390/jcdd9090304
doi: 10.3390/jcdd9090304
pubmed: 36135449
pmcid: 9503592
Zhuang B, Sirajuddin A, Zhao S, Lu M (2021) The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives. Quant Imaging Med Surg 11:4193–4210. https://doi.org/10.21037/qims-20-1234
doi: 10.21037/qims-20-1234
pubmed: 34476199
pmcid: 8339660
Dyverfeldt P, Bissell M, Barker AJ et al (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17:72. https://doi.org/10.1186/s12968-015-0174-5
doi: 10.1186/s12968-015-0174-5
pubmed: 26257141
pmcid: 4530492
Mukai K, Burris NS, Mahadevan VS et al (2018) 4D flow image quality with blood pool contrast: a comparison of gadofosveset trisodium and ferumoxytol. Int J Cardiovasc Imaging 34:273–279. https://doi.org/10.1007/s10554-017-1224-x
doi: 10.1007/s10554-017-1224-x
pubmed: 28884401
Hanneman K, Kino A, Cheng JY et al (2016) Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI: 4D Flow MRI Assessment of Ventricular Mass. J Magn Reson Imaging 44:383–392. https://doi.org/10.1002/jmri.25180
doi: 10.1002/jmri.25180
pubmed: 26871420
pmcid: 4947013
Vial J, Bouzerar R, Pichois R et al (2020) MRI Assessment of Right Ventricular Volumes and Function in Patients With Repaired Tetralogy of Fallot Using kat-ARC Accelerated Sequences. AJR Am J Roentgenol 215:807–817. https://doi.org/10.2214/AJR.19.22726
Hsiao A, Lustig M, Alley MT et al (2012) Rapid Pediatric Cardiac Assessment of Flow and Ventricular Volume With Compressed Sensing Parallel Imaging Volumetric Cine Phase-Contrast MRI. AJR Am J Roentgenol 198:W250–W259. https://doi.org/10.2214/AJR.11.6969
Yao X, Hu L, Peng Y et al (2021) Right and left ventricular function and flow quantification in pediatric patients with repaired tetralogy of Fallot using four-dimensional flow magnetic resonance imaging. BMC Med Imaging 21:161. https://doi.org/10.1186/s12880-021-00693-2
doi: 10.1186/s12880-021-00693-2
pubmed: 34719378
pmcid: 8559379
Fidock B, Archer G, Barker N et al (2021) Standard and emerging CMR methods for mitral regurgitation quantification. Int J Cardiol 331:316–321. https://doi.org/10.1016/j.ijcard.2021.01.066
doi: 10.1016/j.ijcard.2021.01.066
pubmed: 33548381
pmcid: 8040969
Bertelsen L, Vejlstrup N, Andreasen L et al (2020) Cardiac magnetic resonance systematically overestimates mitral regurgitations by the indirect method. Open Heart 7:e001323. https://doi.org/10.1136/openhrt-2020-001323
doi: 10.1136/openhrt-2020-001323
pubmed: 32675299
pmcid: 7368492
Nayak KS, Nielsen J-F, Bernstein MA et al (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17:71. https://doi.org/10.1186/s12968-015-0172-7
doi: 10.1186/s12968-015-0172-7
pubmed: 26254979
pmcid: 4529988
Moon JCC, Lorenz CH, Francis JM et al (2002) Breath-hold FLASH and FISP Cardiovascular MR Imaging: Left Ventricular Volume Differences and Reproducibility. Radiology 223:789–797. https://doi.org/10.1148/radiol.2233011181
doi: 10.1148/radiol.2233011181
pubmed: 12034951
Peng Y, Su X, Hu L et al (2021) Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot. Korean J Radiol 22:1525. https://doi.org/10.3348/kjr.2020.0850
doi: 10.3348/kjr.2020.0850
pubmed: 34448382
pmcid: 8390812
Ramalho J, Semelka RC, Ramalho M et al (2016) Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am J Neuroradiol 37:1192–1198. https://doi.org/10.3174/ajnr.A4615
Vasanawala SS, Nguyen K-L, Hope MD et al (2016) Safety and technique of ferumoxytol administration for MRI: Safety and Technique of Ferumoxytol Administration for MRI. Magn Reson Med 75:2107–2111. https://doi.org/10.1002/mrm.26151
doi: 10.1002/mrm.26151
pubmed: 26890830
pmcid: 4854636
Reiter U, Kovacs G, Reiter C et al (2020) MR 4D flow-based mean pulmonary arterial pressure tracking in pulmonary hypertension. Eur Radiol. https://doi.org/10.1007/s00330-020-07287-6
doi: 10.1007/s00330-020-07287-6
pubmed: 32974687
pmcid: 7979582
Pelc NJ, Bernstein MA, Shimakawa A, Glover GH (1991) Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging 1:405–413. https://doi.org/10.1002/jmri.1880010404
doi: 10.1002/jmri.1880010404
pubmed: 1790362
Keeble C, Baxter PD, Gislason-Lee AJ et al (2016) Methods for the analysis of ordinal response data in medical image quality assessment. Br J Radiol 89:20160094. https://doi.org/10.1259/bjr.20160094
doi: 10.1259/bjr.20160094
pubmed: 26975497
pmcid: 5257322
Zucker EJ, Sandino CM, Kino A et al (2021) Free-breathing Accelerated Cardiac MRI Using Deep Learning: Validation in Children and Young Adults. Radiology 300:539–548. https://doi.org/10.1148/radiol.2021202624
doi: 10.1148/radiol.2021202624
pubmed: 34128724
Suinesiaputra A, Bluemke DA, Cowan BR et al (2015) Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J Cardiovasc Magn Reson 17:63. https://doi.org/10.1186/s12968-015-0170-9
doi: 10.1186/s12968-015-0170-9
pubmed: 26215273
pmcid: 4517503
Contijoch F, Witschey WRT, Rogers K et al (2016) Impact of end-diastolic and end-systolic phase selection in the volumetric evaluation of cardiac MRI: Selection of Cardiac Phases. J Magn Reson Imaging 43:585–593. https://doi.org/10.1002/jmri.25038
doi: 10.1002/jmri.25038
pubmed: 26331591
Sievers B, Kirchberg S, Addo M et al (2004) Assessment of Left Atrial Volumes in Sinus Rhythm and Atrial Fibrillation Using the Biplane Area?Length Method and Cardiovascular Magnetic Resonance Imaging with TrueFISP. J Cardiovasc Magn Reson 6:855–863. https://doi.org/10.1081/JCMR-200036170
doi: 10.1081/JCMR-200036170
pubmed: 15646889
Maceira AM, Cosín-Sales J, Roughton M et al (2010) Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:65. https://doi.org/10.1186/1532-429X-12-65
doi: 10.1186/1532-429X-12-65
pubmed: 21070636
pmcid: 2994941
Mukaka MM (2012) Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71
Hudsmith LE, Petersen SE, Tyler DJ et al (2006) Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 vs. 3 Tesla: A validation study. J Magn Reson Imaging 24:312–318. https://doi.org/10.1002/jmri.20638
doi: 10.1002/jmri.20638
pubmed: 16795076
Malayeri AA, Johnson WC, Macedo R et al (2008) Cardiac cine MRI: Quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging 28:60–66. https://doi.org/10.1002/jmri.21405
doi: 10.1002/jmri.21405
pubmed: 18581356
pmcid: 2671062
Kebed K, Kruse E, Addetia K et al (2017) Atrial-focused views improve the accuracy of two-dimensional echocardiographic measurements of the left and right atrial volumes: a contribution to the increase in normal values in the guidelines update. Int J Cardiovasc Imaging 33:209–218. https://doi.org/10.1007/s10554-016-0988-8
doi: 10.1007/s10554-016-0988-8
pubmed: 27696111
Reiter U, Reiter C, Kräuter K et al (2020) Quantitative clinical cardiac magnetic resonance imaging. Rofo 192:246–256. https://doi.org/10.1055/a-0999-5716
Barkhausen J, Ruehm SG, Goyen M et al (2001) MR Evaluation of Ventricular Function: True Fast Imaging with Steady-State Precession versus Fast Low-Angle Shot Cine MR Imaging: Feasibility Study. Radiology 219:264–269. https://doi.org/10.1148/radiology.219.1.r01ap12264
doi: 10.1148/radiology.219.1.r01ap12264
pubmed: 11274568
Chernobelsky A, Shubayev O, Comeau CR, Wolff SD (2007) Baseline Correction of Phase Contrast Images Improves Quantification of Blood Flow in the Great Vessels. J Cardiovasc Magn Reson 9:681–685. https://doi.org/10.1080/10976640601187588
doi: 10.1080/10976640601187588
pubmed: 17578724
Reiter C, Reiter U, Kräuter C et al (2021) Differences in left ventricular and left atrial function assessed during breath-holding and breathing. Eur J Radiol 141:109756. https://doi.org/10.1016/j.ejrad.2021.109756
doi: 10.1016/j.ejrad.2021.109756
pubmed: 34023727
Kramer CM, Barkhausen J, Bucciarelli-Ducci C et al (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22:17. https://doi.org/10.1186/s12968-020-00607-1
doi: 10.1186/s12968-020-00607-1
pubmed: 32089132
pmcid: 7038611
Cui C, Yin G, Lu M et al (2019) Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI. Korean J Radiol 20:114. https://doi.org/10.3348/kjr.2018.0243
doi: 10.3348/kjr.2018.0243
pubmed: 30627027