Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates.
Journal
Macromolecules
ISSN: 0024-9297
Titre abrégé: Macromolecules
Pays: United States
ID NLM: 0365316
Informations de publication
Date de publication:
08 Aug 2023
08 Aug 2023
Historique:
received:
15
02
2023
revised:
03
07
2023
medline:
14
8
2023
pubmed:
14
8
2023
entrez:
14
8
2023
Statut:
epublish
Résumé
Complex coacervates make up a class of versatile materials formed as a result of the electrostatic associations between oppositely charged polyelectrolytes. It is well-known that the viscoelastic properties of these materials can be easily altered with the ionic strength of the medium, resulting in a range of materials from free-flowing liquids to gel-like solids. However, in addition to electrostatics, several other noncovalent interactions could influence the formation of the coacervate phase depending on the chemical nature of the polymers involved. Here, the importance of intermolecular hydrogen bonds on the phase behavior, microstructure, and viscoelasticity of hyaluronic acid (HA)-chitosan (CHI) complex coacervates is revealed. The density of intermolecular hydrogen bonds between CHI units increases with increasing pH of coacervation, which results in dynamically arrested regions within the complex coacervate, leading to elastic gel-like behavior. This pH-dependent behavior may be very relevant for the controlled solidification of complex coacervates and thus for polyelectrolyte material design.
Identifiants
pubmed: 37576476
doi: 10.1021/acs.macromol.3c00269
pmc: PMC10413963
doi:
Types de publication
Journal Article
Langues
eng
Pagination
5891-5904Informations de copyright
© 2023 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Phys Rev Lett. 2010 Nov 12;105(20):208301
pubmed: 21231268
Macromol Rapid Commun. 2020 Nov;41(21):e2000149
pubmed: 32431012
ACS Appl Polym Mater. 2020 Jul 10;2(7):2612-2621
pubmed: 32685925
Molecules. 2019 Mar 01;24(5):
pubmed: 30823653
ACS Macro Lett. 2022 Jan 18;11(1):20-25
pubmed: 35574801
Carbohydr Polym. 2016 Dec 10;154:86-95
pubmed: 27577900
J Colloid Interface Sci. 2011 Sep 15;361(2):407-22
pubmed: 21705008
Colloids Surf B Biointerfaces. 2012 Mar 1;91:168-74
pubmed: 22104403
Gels. 2018 Aug 09;4(3):
pubmed: 30674843
ACS Macro Lett. 2020 Jul 21;9(7):1067-1073
pubmed: 35648617
Adv Mater. 2019 May;31(21):e1808179
pubmed: 30924992
ACS Appl Mater Interfaces. 2016 Nov 16;8(45):31304-31310
pubmed: 27779379
Biomacromolecules. 2019 Nov 11;20(11):4191-4198
pubmed: 31613600
Soft Matter. 2017 Sep 27;13(37):6594-6605
pubmed: 28905969
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jul;9(4):
pubmed: 27813275
ACS Sustain Chem Eng. 2022 Dec 5;10(48):15968-15977
pubmed: 36507097
Biomacromolecules. 2018 Apr 9;19(4):1198-1211
pubmed: 29554416
Soft Matter. 2021 Feb 15;17(5):1223-1231
pubmed: 33331383
Polymers (Basel). 2021 Jul 30;13(15):
pubmed: 34372116
Macromolecules. 2018 Nov 13;51(21):8887-8898
pubmed: 30956354
ACS Sustain Chem Eng. 2023 Jan 25;11(5):1985-1994
pubmed: 36778523
Soft Matter. 2018 Mar 28;14(13):2454-2464
pubmed: 29376531
Adv Mater. 2023 Jul;35(28):e2210769
pubmed: 36916861
Soft Matter. 2015 Nov 28;11(44):8605-12
pubmed: 26406548
Phys Chem Chem Phys. 2015 Sep 21;17(35):22552-6
pubmed: 26280312
Soft Matter. 2020 Mar 28;16(12):2885-2914
pubmed: 32134099
Chem Soc Rev. 2021 Mar 21;50(6):3690-3705
pubmed: 33616129
Biomolecules. 2022 Dec 05;12(12):
pubmed: 36551245
Macromolecules. 2021 Jul 27;54(14):6878-6890
pubmed: 34334816
Soft Matter. 2016 Apr 20;12(16):3710-20
pubmed: 26984383
Gels. 2018 Jan 18;4(1):
pubmed: 30674787
Soft Matter. 2017 Oct 18;13(40):7332-7340
pubmed: 28951897