The States of Different 5-HT Receptors Located in the Dorsal Raphe Nucleus Are Crucial for Regulating the Awakening During General Anesthesia.
5-HT1A receptor
5-hydroxytryptamine
Dorsal raphe nucleus
General anesthesia
Sevoflurane
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
13
03
2023
accepted:
11
07
2023
medline:
21
11
2023
pubmed:
30
7
2023
entrez:
29
7
2023
Statut:
ppublish
Résumé
General anesthesia is widely used in various clinical practices due to its ability to cause loss of consciousness. However, the exact mechanism of anesthesia-induced unconsciousness remains unclear. It is generally thought that arousal-related brain nuclei are involved. 5-Hydroxytryptamine (5-HT) is closely associated with sleep arousal. Here, we explore the role of the 5-HT system in anesthetic awakening through pharmacological interventions and optogenetic techniques. Our data showed that exogenous administration of 5-hydroxytryptophan (5-HTP) and optogenetic activation of 5-HT neurons in the dorsal raphe nucleus (DR) could significantly shorten the emergence time of sevoflurane anesthesia in mice, suggesting that regulation of the 5-HT system using both endogenous and exogenous approaches could mediate delayed emergence. In addition, we first discovered that the different 5-HT receptors located in the DR, known as 5-HT autoreceptors, are essential for the regulation of general anesthetic awakening, with 5-HT1A and 5-HT2A/C receptors playing a regulatory role. These results can provide a reliable theoretical basis as well as potential targets for clinical intervention to prevent delayed emergence and some postoperative risks.
Identifiants
pubmed: 37516665
doi: 10.1007/s12035-023-03519-0
pii: 10.1007/s12035-023-03519-0
doi:
Substances chimiques
Serotonin
333DO1RDJY
Receptor, Serotonin, 5-HT2A
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6931-6948Subventions
Organisme : National Natural Science Foundation of China
ID : Grant.NO: 81974205
Organisme : National Natural Science Foundation of China
ID : Grant.NO: 81771403
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Brown EN, Purdon PL, Van Dort CJ (2011) General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci 34:601–628
doi: 10.1146/annurev-neuro-060909-153200
pubmed: 21513454
pmcid: 3390788
Ching S, Brown EN (2014) Modeling the dynamical effects of anesthesia on brain circuits. Curr Opin Neurobiol 25:116–122
doi: 10.1016/j.conb.2013.12.011
pubmed: 24457211
pmcid: 4181389
Aggarwal A, Brennan C, Shortal B, Contreras D, Kelz MB, Proekt A (2019) Coherence of visual-evoked gamma oscillations is disrupted by propofol but preserved under equipotent doses of isoflurane. Front Syst Neurosci 13:19
doi: 10.3389/fnsys.2019.00019
pubmed: 31139058
pmcid: 6519322
Land R, Engler G, Kral A, Engel AK (2012) Auditory evoked bursts in mouse visual cortex during isoflurane anesthesia. PLoS One 7(11):e49855
doi: 10.1371/journal.pone.0049855
pubmed: 23185462
pmcid: 3504086
Yli-Hankala A, Jäntti V, Pyykkö I, Lindgren L (1993) Vibration stimulus induced EEG bursts in isoflurane anaesthesia. Electroencephalogr Clin Neurophysiol 87(4):215–220
doi: 10.1016/0013-4694(93)90021-M
pubmed: 7691552
Mason SE, Noel-Storr A, Ritchie CW (2010) The impact of general and regional anesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis. J Alzheimers Dis: JAD 22(Suppl 3):67–79
doi: 10.3233/JAD-2010-101086
pubmed: 20858956
Neto S, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, Gajic O, El-Tahan MR, Ghamdi AA, Günay E, Jaber S, Kokulu S, Kozian A, Licker M, Lin WQ, Maslow AD, Memtsoudis SG, Reis Miranda D, Moine P, Ng T, Paparella D, Ranieri VM, Scavonetto F, Schilling T, Selmo G, Severgnini P, Sprung J, Sundar S, Talmor D, Treschan T, Unzueta C, Weingarten TN, Wolthuis EK, Wrigge H, Amato MB, Costa EL, de Abreu MG, Pelosi P, Schultz MJ (2016) Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data, The Lancet. Respir Med 4(4):272–80
Harris M, Chung F (2013) Complications of general anesthesia. Clin Plast Surg 40(4):503–513
doi: 10.1016/j.cps.2013.07.001
pubmed: 24093647
Franks NP, Zecharia AY (2011) Sleep and general anesthesia. Can J Anaesth= J Can d’anesth 58(2):139–48
doi: 10.1007/s12630-010-9420-3
Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15(4):269–281
doi: 10.1016/j.smrv.2010.11.003
pubmed: 21459634
Okaty BW, Commons KG, Dymecki SM (2019) Embracing diversity in the 5-HT neuronal system. Nat Rev Neurosci 20(7):397–424
doi: 10.1038/s41583-019-0151-3
pubmed: 30948838
Mukaida K, Shichino T, Koyanagi S, Himukashi S, Fukuda K (2007) Activity of the serotonergic system during isoflurane anesthesia. Anesth Analg 104(4):836–839
doi: 10.1213/01.ane.0000255200.42574.22
pubmed: 17377090
Monti JM (2010) The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med Rev 14(5):307–317
doi: 10.1016/j.smrv.2009.11.004
pubmed: 20153669
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L (2018) Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175(2):472-487.e20
doi: 10.1016/j.cell.2018.07.043
pubmed: 30146164
pmcid: 6173627
Paul ED, Lowry CA (2013) Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders. J Psychopharmacol (Oxford, England) 27(12):1090–1106
doi: 10.1177/0269881113490328
Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L (2014) Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson’s disease. Front Neural Circ 8:21
Li A, Li R, Ouyang P, Li H, Wang S, Zhang X, Wang D, Ran M, Zhao G, Yang Q, Zhu Z, Dong H, Zhang H (2021) Dorsal raphe serotonergic neurons promote arousal from isoflurane anesthesia. CNS Neurosci Ther 27(8):941–950
doi: 10.1111/cns.13656
pubmed: 33973716
pmcid: 8265942
Sakai EM, Connolly LA, Klauck JA (2005) Inhalation anesthesiology and volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. Pharmacotherapy 25(12):1773–1788
doi: 10.1592/phco.2005.25.12.1773
pubmed: 16305297
Nagai Y, Takayama K, Nishitani N, Andoh C, Koda M, Shirakawa H, Nakagawa T, Nagayasu K, Yamanaka A, Kaneko S (2020) The role of dorsal raphe serotonin neurons in the balance between reward and aversion. Int J Mol Sci 21:E2160. https://doi.org/10.3390/ijms21062160
doi: 10.3390/ijms21062160
Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88(3):1183–1241
doi: 10.1152/physrev.00043.2007
pubmed: 18626069
Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T (2022) Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science (New York, NY) 375(6584):994–1000
doi: 10.1126/science.abl6618
Osorio-Forero A, Cardis R, Vantomme G, Guillaume-Gentil A, Katsioudi G, Devenoges C, Fernandez LMJ, Lüthi A (2021) Noradrenergic circuit control of non-REM sleep substates. Curr Biol: CB 31(22):5009-5023.e7
doi: 10.1016/j.cub.2021.09.041
pubmed: 34648731
Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M (2020) Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science (New York, N.Y.) 369(6508)
Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92(3):1087–1187
doi: 10.1152/physrev.00032.2011
pubmed: 22811426
Zhou W, Cheung K, Kyu S, Wang L, Guan Z, Kurien PA, Bickler PE, Jan LY (2018) Activation of orexin system facilitates anesthesia emergence and pain control. Proc Natl Acad Sci USA 115(45):E10740-e10747
doi: 10.1073/pnas.1808622115
pubmed: 30348769
pmcid: 6233126
Fiske E, Portas CM, Grønli J, Sørensen E, Bjorvatn B, Bjørkum AA, Ursin R (2008) Increased extracellular 5-HT but no change in sleep after perfusion of a 5-HT1A antagonist into the dorsal raphe nucleus of rats. Acta Physiol (Oxf) 193(1):89–97
doi: 10.1111/j.1748-1716.2007.01792.x
pubmed: 18081887
Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116(3):669–683
doi: 10.1016/S0306-4522(02)00584-5
pubmed: 12573710
Oikonomou G, Altermatt M, Zhang RW, Coughlin GM, Montz C, Gradinaru V, Prober DA (2019) The serotonergic raphe promote sleep in zebrafish and mice. Neuron 103(4):686-701.e8
doi: 10.1016/j.neuron.2019.05.038
pubmed: 31248729
pmcid: 6706304
Imeri L, Mancia M, Bianchi S, Opp MR (2000) 5-Hydroxytryptophan, but not L-tryptophan, alters sleep and brain temperature in rats. Neuroscience 95(2):445–452
doi: 10.1016/S0306-4522(99)00435-2
pubmed: 10658624
Morrow JD, Vikraman S, Imeri L, Opp MR (2008) Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/6J and interleukin-6-deficient mice are dose and time related. Sleep 31(1):21–33
doi: 10.1093/sleep/31.1.21
pubmed: 18220075
pmcid: 2225553
Yin XL, Li JC, Xue R, Li S, Zhang Y, Dong HJ, Li Y, Wang HL, Zhang YZ (2022) Melatonin pretreatment prevents propofol-induced sleep disturbance by modulating circadian rhythm in rats. Exp Neurol 354:114086
doi: 10.1016/j.expneurol.2022.114086
pubmed: 35460759
Maffei ME (2020) 5-Hydroxytryptophan (5-HTP): Natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology. Int J Mol Sci 22(1)
Filip M, Bader M (2009) Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol Rep: PR 61(5):761–777
doi: 10.1016/S1734-1140(09)70132-X
pubmed: 19903999
Hoyer D (2017) 5-HT receptor nomenclature: naming names, does it matter? A tribute to Maurice Rapport. ACS Chem Neurosci 8(5):908–919
doi: 10.1021/acschemneuro.7b00011
pubmed: 28269984
Oh E, Maejima T, Liu C, Deneris E, Herlitze S (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285(40):30825–30836
doi: 10.1074/jbc.M110.147298
pubmed: 20643652
pmcid: 2945576
Day HE, Greenwood BN, Hammack SE, Watkins LR, Fleshner M, Maier SF, Campeau S (2004) Differential expression of 5HT-1A, alpha 1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol 474(3):364–378
doi: 10.1002/cne.20138
pubmed: 15174080
pmcid: 2430888
Sun N, Qin YJ, Xu C, Xia T, Du ZW, Zheng LP, Li AA, Meng F, Zhang Y, Zhang J, Liu X, Li TY, Zhu DY, Zhou QG (2022) Design of fast-onset antidepressant by dissociating SERT from nNOS in the DRN. Science (New York, NY) 378(6618):390–398
doi: 10.1126/science.abo3566
Koyama S, Kubo C, Rhee JS, Akaike N (1999) Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons. J Physiol 518(Pt 2):525–38
doi: 10.1111/j.1469-7793.1999.0525p.x
pubmed: 10381597
pmcid: 2269437
Mirkes SJ, Bethea CL (2001) Oestrogen, progesterone and serotonin converge on GABAergic neurones in the monkey hypothalamus. J Neuroendocrinol 13(2):182–192
doi: 10.1111/j.1365-2826.2001.00612.x
pubmed: 11168844
Serrats J, Mengod G, Cortés R (2005) Expression of serotonin 5-HT2C receptors in GABAergic cells of the anterior raphe nuclei. J Chem Neuroanat 29(2):83–91
doi: 10.1016/j.jchemneu.2004.03.010
pubmed: 15652696
López-Giménez JF, Vilaró MT, Palacios JM, Mengod G (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429(4):571–589
doi: 10.1002/1096-9861(20010122)429:4<571::AID-CNE5>3.0.CO;2-X
pubmed: 11135236