Valence and Core Photoelectron Spectra of Aqueous I3- from Multi-Reference Quantum Chemistry.
multi-reference methods
photoelectron spectra
shake-up bands
triiodide anion
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
10 Jul 2023
10 Jul 2023
Historique:
received:
06
06
2023
revised:
03
07
2023
accepted:
04
07
2023
medline:
29
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
epublish
Résumé
The I3- molecule is known to undergo substantial structural reorganization upon solvation by a protic solvent, e.g., water. However, the details of this process are still controversially discussed in the literature. In the present study, we combined experimental and theoretical efforts to disentangle this controversy. The valence (5p), N4,5 (4d), and M4,5 (3d) edge photoelectron spectra were measured in an aqueous solution and computed using high-level multi-reference methods. Our previous publication mainly focused on obtaining reliable experimental evidence, whereas in the present article, we focused primarily on theoretical aspects. The complex electronic structure of I3- requires the inclusion of both static and dynamic correlation, e.g., via the multi-configurational perturbation theory treatment. However, the resulting photoelectron spectra appear to be very sensitive to problems with variational stability and intruder states. We attempted to obtain artifact-free spectra, allowing for a more reliable interpretation of experiments. Finally, we concluded that the 3d Photoelectron Spectrum (PES) is particularly informative, evidencing an almost linear structure with a smaller degree of bond asymmetry than previously reported.
Identifiants
pubmed: 37513192
pii: molecules28145319
doi: 10.3390/molecules28145319
pmc: PMC10383688
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
J Chem Phys. 2015 Aug 21;143(7):074104
pubmed: 26298112
J Chem Phys. 2011 Jun 7;134(21):214113
pubmed: 21663350
J Chem Phys. 2014 May 7;140(17):174506
pubmed: 24811645
Struct Dyn. 2014 Feb 11;1(1):011301
pubmed: 26798770
J Synchrotron Radiat. 2001 Mar 1;8(Pt 2):674-6
pubmed: 11512892
Phys Chem Chem Phys. 2013 Dec 14;15(46):20189-96
pubmed: 24162078
Nature. 2001 Nov 15;414(6861):338-44
pubmed: 11713540
Phys Rev A Gen Phys. 1986 Jun;33(6):3742-3748
pubmed: 9897114
J Phys Chem B. 2014 Mar 20;118(11):3164-74
pubmed: 24564292
Chem Sci. 2016 Aug 1;7(8):4880-4890
pubmed: 30155136
J Chem Phys. 2007 Mar 28;126(12):124504
pubmed: 17411141
Phys Chem Chem Phys. 2022 Jun 29;24(25):15540-15555
pubmed: 35713286
J Phys Chem B. 2012 Jan 12;116(1):3-8
pubmed: 22107172
Rev Sci Instrum. 2022 Jan 1;93(1):015101
pubmed: 35104975
J Chem Phys. 2008 Aug 14;129(6):065102
pubmed: 18715106
Phys Chem Chem Phys. 2018 Aug 1;20(30):19916-19921
pubmed: 30020286
Struct Dyn. 2020 Dec 28;7(6):064901
pubmed: 33415183
J Am Chem Soc. 2023 Jul 26;145(29):15754-15765
pubmed: 37163700
Nat Commun. 2022 Jan 26;13(1):522
pubmed: 35082327
Phys Rev Lett. 2013 Apr 19;110(16):165505
pubmed: 23679619
Chem Sci. 2021 Jul 2;12(31):10558-10582
pubmed: 34447550
Chem Rev. 2006 Apr;106(4):1176-211
pubmed: 16608177
J Chem Theory Comput. 2023 May 22;:
pubmed: 37216210
J Chem Phys. 2010 Aug 14;133(6):064305
pubmed: 20707568
Chemistry. 2015 Mar 2;21(10):4049-55
pubmed: 25631177
Phys Rev Lett. 2003 May 9;90(18):185505
pubmed: 12786022