Dual Chalcogen-Bonding Interactions for the Conformational Control of Urea.
acidity
chalcogen-bonding interaction
conformational control
tweezer-shaped molecule
urea
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
26 Oct 2023
26 Oct 2023
Historique:
received:
05
07
2023
medline:
29
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
ppublish
Résumé
Dual chalcogen-bonding interactions is proposed as a novel means for the conformational control of urea derivatives. The formation of a chalcogen-bonding interaction at both sides of the urea carbonyl group was unambiguously confirmed by X-ray diffraction as well as computational studies including non-covalent interaction (NCI) plot index analysis, quantum theory of atoms in molecules (QTAIM) analysis, and natural bond orbital (NBO) analysis via DFT calculations. By virtue of this dual interaction, urea derivatives that bear chalcogen atoms (X=S and Se) adopt a planar structure via the carbonyl oxygen (O) with an X⋅⋅⋅O⋅⋅⋅X arrangement on the same side of the molecule. The rigidity of the conformational lock was evaluated using the molecular arrangement in the crystal and the rotational barrier of benzochalcogenophene ring, which indicated a stronger conformational lock in benzoselenophene than in benzothiophene urea derivatives. Furthermore, the acidity of the urea derivatives increases according to the Lewis-acidic properties of the chalcogen-bonding interactions, whereby benzoselenophene urea is more acidic than benzothiophene urea. Tweezer-shaped urea derivatives were prepared, and their stereostructure proved the viability of the conformational control for defining the location of the substituents on the urea framework.
Identifiants
pubmed: 37507838
doi: 10.1002/chem.202302139
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202302139Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
For selected reviews, see:
B. R. Beno, K.-S. Yeung, M. D. Bartberger, L. D. Pennington, N. A. Meanwell, J. Med. Chem. 2015, 58, 4383;
H. Huang, L. Yang, A. Facchetti, T. J. Marks, Chem. Rev. 2017, 117, 10291;
K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Dalton Trans. 2017, 46, 10121;
M. Breugst, D. von der Heiden, J. Schmauck, Synthesis 2017, 49, 3224;
L. Vogel, P. Wonner, S. M. Huber, Angew. Chem. Int. Ed. 2019, 58, 1880;
K. Strakova, L. Assies, A. Goujon, F. Piazzolla, H. V. Humeniuk, S. Matile, Chem. Rev. 2019, 119, 10977.
Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka, M. Shiro, J. Am. Chem. Soc. 1998, 120, 3104; see also Ref. [1a].
J. Noh, S. Jung, D. G. Koo, G. Kim, K. S. Choi, J. Park, T. J. Shin, C. Yang, J. Park, Sci. Rep. 2018, 8, 14448;
B. Zhou, F. P. Gabbaï, Chem. Sci. 2020, 11, 7495; see also Ref. [1b] and [1c]. Chalcogen-bonding interactions have been employed for inducing conformational rigidity in chiral organoselenium compounds; for selected reviews, see:
T. Wirth, Angew. Chem. Int. Ed. 2000, 39, 3740;
A. J. Mukherjee, S. S. Zade, H. B. Singh, R. B. Sunoj, Chem. Rev. 2010, 110, 4357.
Selected reviews and reports, see,
S. Benz, J. López-Andarias, J. Mareda, N. Sakai, S. Matile, Angew. Chem. Int. Ed. 2017, 56, 812;
S. Benz, J. Mareda, C. Besnard, N. Sakai, S. Matile, Chem. Sci. 2017, 8, 8164;
W. Wang, H. Zhu, S. Liu, Z. Zhao, L. Zhang, J. Hao, Y. Wang, J. Am. Chem. Soc. 2019, 141, 9175;
J. Bamberger, F. Ostler, O. García Mancheño, ChemCatChem 2019, 11, 5198;
C. M. Young, A. Elmi, D. J. Pascoe, R. K. Morris, C. McLaughlin, A. M. Woods, A. B. Frost, A. de la Houpliere, K. B. Ling, T. K. Smith, A. M. Z. Slawin, P. H. Willoughby, S. L. Cockroft, A. D. Smith, Angew. Chem. Int. Ed. 2020, 59, 3705;
W. Wang, H. Zhu, L. Feng, Q. Yu, J. Hao, R. Zhu, Y. Wang, J. Am. Chem. Soc. 2020, 142, 3117;
W. Yan, M. Zheng, C. Xu, F.-E. Chen, Green Synth. Catal. 2021, 2, 329;
B. Zhou, F. P. Gabbaï, J. Am. Chem. Soc. 2021, 143, 8625;
X. He, X. Wang, Y. L. S. Tse, Z. Ke, Y.-Y. Yeung, ACS Catal. 2021, 11, 12632;
H. Zhu, P.-P. Zhou, Y. Wang, Nat. Commun. 2022, 13, 3563;
J. Liu, M. Zhou, R. Deng, P. Zheng, Y. R. Chi, Nat. Commun. 2022, 13, 4793;
Y. Lu, Z.-X. Wang, X.-Y. Chen, Angew. Chem. Int. Ed. 2022, 61, e202116071;
P. Peluso, V. Mamane, Molecule 2022, 27, 4625;
Z. Zhao, Y. Wang, Acc. Chem. Res. 2023, 56, 608.
D. J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139, 15160.
For examples, see:
Y. Sohtome, K. Nakagawa, Synlett 2010, 1;
S. Liu, K. Maruoka, S. Shirakawa, Angew. Chem. Int. Ed. 2017, 56, 4819;
K. Okuno, T. Nakamura, S. Shirakawa, Asian J. Org. Chem. 2021, 10, 655;
T. Nakamura, K. Okuno, K. Kaneko, M. Yamanaka, S. Shirakawa, Org. Biomol. Chem. 2020, 18, 3367;
Y. Kuninobu, H. Ida, M. Nishi, M. Kanai, Nat. Chem. 2015, 7, 712;
X. Lu, Y. Yoshige, H. Ida, M. Nishi, M. Kanai, Y. Kuninobu, ACS Catal. 2019, 91, 1705;
A. Franchino, A. Martí, A. M. Echavarren, J. Am. Chem. Soc. 2022, 144, 3497;
M. Odagi, I. Mori, K. Sugimoto, K. Nagasawa, ACS Catal. 2023, 13, 2295.
For examples, see:
S. Müller, G. D. Pantoş, R. Rodriguez, S. Balasubramanian, Chem. Commun. 2009, 80;
A. K. Ghosh, M. Brindisi, J. Med. Chem. 2020, 63, 2751.
G. Luchini, D. M. H. Ascough, J. V. Alegre-Requena, V. Gouverneur, R. S. Paton, Tetrahedron 2019, 75, 697.
C.-H. Chien, M.-k. Leung, J.-K. Su, G.-H. Li, Y.-H. Liu, Y. Wang, J. Org. Chem. 2004, 69, 1866;
P. S. Corbin, S. C. Zimmerman, P. A. Thiessen, N. A. Hawryluk, T. J. Murray, J. Am. Chem. Soc. 2001, 123, 10475. See also Ref. [7a].
A. Tanatani, H. Kagechika, I. Azumaya, R. Fukutomi, Y. Ito, K. Yamaguchi, K. Shudo, Tetrahedron Lett. 1997, 38, 4425;
J. Clayden, L. Lemiègre, M. Pickworth, L. Jones, Org. Biomol. Chem. 2008, 6, 2908.
T. Murai, W. Lu, T. Kuribayashi, K. Morisaki, Y. Ueda, S. Hamada, Y. Kobayashi, T. Sasamori, N. Tokitoh, T. Kawabata, T. Furuta, ACS Catal. 2021, 7, 1351.
For examples of chalcogen-bonding interactions via a carbonyl group, see:
V. B. Birman, X. Li, Org. Lett. 2007, 9, 37;
P. Liu, X. Yang, V. B. Birman, K. N. Houk, Org. Lett. 2012, 14, 3288;
E. R. T. Robinson, D. M. Walden, C. Fallan, M. D. Greenhalgh, P. H.-Y. Cheong, A. D. Smith, Chem. Sci. 2016, 7, 6919;
E. S. Munday, M. A. Grove, T. Feoktistova, A. C. Brueckner, D. M. Walden, C. M. Young, A. M. Z. Slawin, A. D. Campbell, P. H.-Y. Cheong, A. D. Smith, Angew. Chem. Int. Ed. 2020, 59, 7897;
A. Ito, M. Asato, Y. Asami, K. Fukuda, R. Yamasaki, I. Okamoto, J. Org. Chem. 2023, 88, 7075. See also, Ref. [5].
Recently, a dual chalcogen-bonding interaction between the oxygen atom of phenoxide and the sulfur atoms of thiophene has been reported; for details, see: M. Yokoyama, Y. Okayasu, Y. Kobayashi, H. Tanaka, Y. Haketa, H. Maeda, Org. Lett. 2023, 25, 3676.
C. Moiteiro, I. Marques, W. G. Ryder, V. Cachatra, S. Carvalho, L.-J. Chen, B. J. Goodfellow, P. A. Gale, V. Félix, Eur. J. Org. Chem. 2022, e202101484.
The mixed solvent acetone/H2O did not work well for the preparation of 5.
In specific cases, chalcogen-bonding interactions between oxygen atoms have been proposed; for details, see: P. Sarma, P. Sharma, R. M. Gomila, A. Frontera, M. Barcelo-Oliver, A. K. Verma, B. Baruwa, M. K. Bhattacharyya, J. Mol. Struct. 2022, 1250, 131883.
E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garciá, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498;
J. Contreas-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625.
R. F. W. Bader, Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990;
T. Lu, F. W. Chen, J. Comput. Chem. 2012, 33, 580.
H. S. Biswal, A. K. Sahu, B. Galmés, A. Frontera, D. Chopra, ChemBioChem 2022, 23, e202100498; see also Ref. [4l].
A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899;
F. Weinhold, J. Comput. Chem. 2012, 33, 2363.
J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
K. B. Wiberg, M. Marquez, H. Castejon, J. Org. Chem. 1994, 59, 6817;
G. J. Bartlett, A. Choughary, R. T. Raines, D. N. Woolfson, Nat. Chem. Biol. 2010, 6, 615.
Interacting quantum atoms (IQA) calculations of 1 a and 1 c to estimate the stabilizing character of the chalcogen-bonding interactions were also carried out; for details, see the Supporting Information. For the theoretical details pertaining to IQA calculations, see:
A. M. Pendás, M. A. Blanco, E. Francisco, J. Chem. Phys. 2004, 120, 4581;
M. A. Blanco, A. M. Pendás, E. Francisco, J. Chem. Theory Comput. 2005, 1, 1096;
A. M. Pendás, M. A. Blanco, E. Francisco, J. Chem. Theory Comput. 2006, 2, 90;
D. Tiana, E. Francisco, M. A. Blanco, P. Macchi, A. Sironi, A. M. Pendás, J. Chem. Theory Comput. 2010, 6, 1064.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
A. Austin, G. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, K. A. Throssell, J. Chem. Theory Comput. 2012, 8, 4989.
M. Jeffries-EL, B. M. Kobilka, B. J. Hale, Macromolecules 2014, 47, 7253.
A similar downfield shift of the carbonyl carbon signals due to a chalcogen-bonding interaction has been reported; for details, see: T. Murai, S. Hamada, Y. Kobayashi, T. Sasamori, T. Furuta, Chem. Pharm. Bull. 2022, 70, 605; see also Ref. [4e].
The same tendency was observed for the bromo-substituted urea derivatives, whose carbonyl carbon and N−H proton signals appeared at 150.7 ppm and 10.36 ppm for 1 b and 151.4 ppm and 10.54 ppm for 1 d, respectively, in DMSO-d6.
The pKa values were measured using the overlapping indicator method in DMSO. The reason that the acidity of 5 was similar to that of 1 a might be due to the higher inductive effect of oxygen compared to that of sulfur; for the overlapping indicator method, see:
W. S. Matthews, J. E. Bares, J. E. Bartmess, F. G. Bordwell, F. J. Cornforth, G. E. Drucker, Z. Margolin, R. J. McCallum, G. J. McCollum, N. R. Vanier, J. Am. Chem. Soc. 1975, 97, 7006;
G. Jakab, C. Tancon, Z. Zhang, K. M. Lippert, P. R. Schreiner, Org. Lett. 2012, 14, 1724.
It is worth noting here that the pKa values of 1 a, 1 c, and 5 were significantly smaller than that of diphenyl urea (pKa~19 in DMSO), which indicates that the introduction of the benzochalcogenophene moieties itself decreases the acidity of urea; for pKa data of diphenyl urea, see: F. G. Bordwell, D. J. Algrim, J. A. Harrelson, Jr. J. Am. Chem. Soc. 1988, 110, 5903. See also Ref. [29b].
The NBO analyses of 1 b and 1 d support the formation of the chalcogen-bonding interactions (for details, see the Supporting Information).
The formation of the dual chalcogen-bonding interaction was confirmed by the short Se⋅⋅⋅O contact distances (2.7693(5) Å) as well as the NBO analysis (for details, see the Supporting Information).
The formation of the dual chalcogen-bonding interaction was confirmed by the short Se⋅⋅⋅O contact distances (2.739(5) Å and 2.730(5) Å) as well as the NBO analysis (for details, see the Supporting Information).
Deposition Numbers 2209776 (for 1 a ⋅ acetone), 2248567 (for 1 a from THF), 2209850 (for 1 b ⋅ acetone), 2248576 (for 1 b ⋅ THF), 2209463 (for 1 c ⋅ acetone), 2248574 (for 1 c from THF), 2209497 (for 1 d ⋅ acetone), 2248588 (for 1 d ⋅ THF), 2209499 (for 5), 2209502 (for 9 d), 2209503 (for 9 e), and 2209498 (for 10) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.