Resistance training diminishes mitochondrial adaptations to subsequent endurance training in healthy untrained men.
HIIT
aerobic training
mitochondrial remodelling
skeletal muscle
strength training
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
06
04
2023
accepted:
03
07
2023
medline:
4
9
2023
pubmed:
20
7
2023
entrez:
20
7
2023
Statut:
ppublish
Résumé
We investigated the effects of performing a period of resistance training (RT) on the performance and molecular adaptations to a subsequent period of endurance training (ET). Twenty-five young adults were divided into an RT+ET group (n = 13), which underwent 7 weeks of RT followed by 7 weeks of ET, and an ET-only group (n = 12), which performed 7 weeks of ET. Body composition, endurance performance and muscle biopsies were collected before RT (T1, baseline for RT+ET), before ET (T2, after RT for RT+ET and baseline for ET) and after ET (T3). Immunohistochemistry was performed to determine fibre cross-sectional area (fCSA), myonuclear content, myonuclear domain size, satellite cell number and mitochondrial content. Western blots were used to quantify markers of mitochondrial remodelling. Citrate synthase activity and markers of ribosome content were also investigated. RT improved body composition and strength, increased vastus lateralis thickness, mixed and type II fCSA, myonuclear number, markers of ribosome content, and satellite cell content (P < 0.050). In response to ET, both groups similarly decreased body fat percentage (P < 0.0001) and improved endurance performance (e.g.
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3825-3846Subventions
Organisme : NIH HHS
ID : T32GM141739
Pays : United States
Commentaires et corrections
Type : UpdateOf
Type : CommentIn
Informations de copyright
© 2023 The Authors. The Journal of Physiology © 2023 The Physiological Society.
Références
Balsalobre-Fernandez, C., Santos-Concejero, J., & Grivas, G. V. (2016). Effects of strength training on running economy in highly trained runners: A systematic review with meta-analysis of controlled trials. Journal of Strength and Conditioning Research, 30(8), 2361-2368.
Bassett, D. R., Jr, & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32, 70-84.
Beattie, K., Kenny, I. C., Lyons, M., & Carson, B. P. (2014). The effect of strength training on performance in endurance athletes. Sports Medicine (Auckland, N.Z.), 44(6), 845-865.
Blagrove, R. C., Howatson, G., & Hayes, P. R. (2018). Effects of strength training on the physiological determinants of middle- and long-distance running performance: A systematic review. Sports Medicine (Auckland, N.Z.), 48(5), 1117-1149.
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151-160.
Carraro, F., Stuart, C. A., Hartl, W. H., Rosenblatt, J., & Wolfe, R. R. (1990). Effect of exercise and recovery on muscle protein synthesis in human subjects. American Journal of Physiology, 259, E470-E476.
Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: Do opposites distract? The Journal of Physiology, 595(9), 2883-2896.
Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., Mettauer, B., Piquard, F., Geny, B., & Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: Relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295(1), R264-R272.
Figueiredo, V. C., D'Souza, R. F., Van Pelt, D. W., Lawrence, M. M., Zeng, N., Markworth, J. F., Poppitt, S. D., Miller, B. F., Mitchell, C. J., McCarthy, J. J., Dupont-Versteegden, E. E., & Cameron-Smith, D. (2021). Ribosome biogenesis and degradation regulate translational capacity during muscle disuse and reloading. Journal of Cachexia Sarcopenia Muscle, 12(1), 130-143.
Figueiredo, V. C., Wen, Y., Alkner, B., Fernandez-Gonzalo, R., Norrbom, J., Vechetti, I. J., Jr., Valentino, T., Mobley, C. B., Zentner, G. E., Peterson, C. A., McCarthy, J. J., Murach, K. A., & von Walden, F. (2021). Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. The Journal of Physiology, 599(13), 3363-3384.
Fyfe, J. J., Bishop, D. J., Bartlett, J. D., Hanson, E. D., Anderson, M. J., Garnham, A. P., & Stepto, N. K. (2018). Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome biogenesis-related signalling, following short-term concurrent versus single-mode resistance training. Scientific Reports, 8(1), 560.
Gibala, M. J. (2021). Physiological basis of interval training for performance enhancement. Experimental Physiology, 106(12), 2324-2327.
Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition and Metabolism, 39(3), 409-412.
Granata, C., Jamnick, N. A., & Bishop, D. J. (2018). Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Medicine (Auckland, N.Z.), 48(8), 1809-1828.
Groennebaek, T., Jespersen, N. R., Jakobsgaard, J. E., Sieljacks, P., Wang, J., Rindom, E., Musci, R. V., Botker, H. E., Hamilton, K. L., Miller, B. F., de Paoli, F. V., & Vissing, K. (2018). Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training. Frontiers in Physiology, 9, 1796.
Gureev, A. P., Shaforostova, E. A., & Popov, V. N. (2019). Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1alpha signaling pathways. Frontiers in Genetics, 10, 435.
Hammarstrom, D., Ofsteng, S. J., Jacobsen, N. B., Flobergseter, K. B., Ronnestad, B. R., & Ellefsen, S. (2022). Ribosome accumulation during early phase resistance training in humans. Acta Physiologica (Oxf), 235(1), e13806.
Jacobs, R. A., Fluck, D., Bonne, T. C., Burgi, S., Christensen, P. M., Toigo, M., & Lundby, C. (2013). Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Journal of Applied Physiology (1985), 115(6), 785-793.
Jacobs, R. A., Rasmussen, P., Siebenmann, C., Diaz, V., Gassmann, M., Pesta, D., Gnaiger, E., Nordsborg, N. B., Robach, P., & Lundby, C. (2011). Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. Journal of Applied Physiology (1985), 111(5), 1422-1430.
Joanisse, S., McKay, B. R., Nederveen, J. P., Scribbans, T. D., Gurd, B. J., Gillen, J. B., Gibala, M. J., Tarnopolsky, M., & Parise, G. (2015). Satellite cell activity, without expansion, after nonhypertrophic stimuli. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 309(9), R1101-R1111.
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: the physiology of champions. The Journal of Physiology, 586(1), 35-44.
Kumar, V., Atherton, P., Smith, K., & Rennie, M. J. (2009). Human muscle protein synthesis and breakdown during and after exercise. Journal of Applied Physiology (1985), 106(6), 2026-2039.
Lamb, D. A., Moore, J. H., Mesquita, P. H. C., Smith, M. A., Vann, C. G., Osburn, S. C., Fox, C. D., Lopez, H. L., Ziegenfuss, T. N., Huggins, K. W., Goodlett, M. D., Fruge, A. D., Kavazis, A. N., Young, K. C., & Roberts, M. D. (2020). Resistance training increases muscle NAD(+) and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany NY), 12(10), 9447-9460.
Lee, H., Kim, K., Kim, B., Shin, J., Rajan, S., Wu, J., Chen, X., Brown, M. D., Lee, S., & Park, J. Y. (2018). A cellular mechanism of muscle memory facilitates mitochondrial remodelling following resistance training. The Journal of Physiology, 596(18), 4413-4426.
Lim, C., Kim, H. J., Morton, R. W., Harris, R., Phillips, S. M., Jeong, T. S., & Kim, C. K. (2019). Resistance Exercise-induced Changes in Muscle Phenotype Are Load Dependent. Medicine and Science in Sports and Exercise, 51(12), 2578-2585.
MacInnis, M. J., & Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity. The Journal of Physiology, 595(9), 2915-2930.
McCarthy, J. J., Dupont-Versteegden, E. E., Fry, C. S., Murach, K. A., & Peterson, C. A. (2017). Methodological issues limit interpretation of negative effects of satellite cell depletion on adult muscle hypertrophy. Development (Cambridge, England), 144(8), 1363-1365.
Mesquita, P. H. C., Lamb, D. A., Parry, H. A., Moore, J. H., Smith, M. A., Vann, C. G., Osburn, S. C., Fox, C. D., Ruple, B. A., Huggins, K. W., Fruge, A. D., Young, K. C., Kavazis, A. N., & Roberts, M. D. (2020). Acute and chronic effects of resistance training on skeletal muscle markers of mitochondrial remodeling in older adults. Physiological Reports, 8(15), e14526.
Mesquita, P. H. C., Vann, C. G., Phillips, S. M., McKendry, J., Young, K. C., Kavazis, A. N., & Roberts, M. D. (2021). Skeletal muscle ribosome and mitochondrial biogenesis in response to different exercise training modalities. Frontiers Physiology, 12, 725866.
Milanovic, Z., Sporis, G., & Weston, M. (2015). Effectiveness of high-intensity interval training (HIT) and continuous endurance training for V̇O2max${\dot V_{{{\mathrm{O}}_2}\max }}$ improvements: A systematic review and meta-analysis of controlled trials. Sports Medicine (Auckland, N.Z.), 45(10), 1469-1481.
Mobley, C. B., Haun, C. T., Roberson, P. A., Mumford, P. W., Romero, M. A., Kephart, W. C., Anderson, R. G., Vann, C. G., Osburn, S. C., Pledge, C. D., Martin, J. S., Young, K. C., Goodlett, M. D., Pascoe, D. D., Lockwood, C. M., & Roberts, M. D. (2017). Effects of whey, soy or leucine supplementation with 12 weeks of resistance training on strength, body composition, and skeletal muscle and adipose tissue histological attributes in college-aged males. Nutrients, 9(9), 972.
Moro, T., Brightwell, C. R., Volpi, E., Rasmussen, B. B., & Fry, C. S. (2020). Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. Journal of Applied Physiology (1985), 128(4), 795-804.
Murach, K. A., Fry, C. S., Dupont-Versteegden, E. E., McCarthy, J. J., & Peterson, C. A. (2021). Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. Faseb Journal, 35(10), e21893.
Murach, K. A., Fry, C. S., Kirby, T. J., Jackson, J. R., Lee, J. D., White, S. H., Dupont-Versteegden, E. E., McCarthy, J. J., & Peterson, C. A. (2018). Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation. Physiology (Bethesda, Md.), 33, 26-38.
Paavolainen, L., Hakkinen, K., Hamalainen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology (1985), 86(5), 1527-1533.
Pasiakos, S. M., & Carbone, J. W. (2014). Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. Iubmb Life, 66(7), 478-484.
Petrella, J. K., Kim, J. S., Cross, J. M., Kosek, D. J., & Bamman, M. M. (2006). Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. American Journal of Physiology. Endocrinology and Metabolism, 291(5), E937-E946.
Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., & Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. American Journal of Physiology, 273, E99-107.
Reidy, P. T., Borack, M. S., Markofski, M. M., Dickinson, J. M., Fry, C. S., Deer, R. R., Volpi, E., & Rasmussen, B. B. (2017). Post-absorptive muscle protein turnover affects resistance training hypertrophy. European Journal of Applied Physiology, 117(5), 853-866.
Robinson, M. M., Dasari, S., Konopka, A. R., Johnson, M. L., Manjunatha, S., Esponda, R. R., Carter, R. E., Lanza, I. R., & Nair, K. S. (2017). Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell metabolism, 25(3), 581-592.
Romero, M. A., Mobley, C. B., Linden, M. A., Meers, G. M., Martin, J. S., Young, K. C., Rector, R. S., & Roberts, M. D. (2017). Endurance training lowers ribosome density despite increasing ribosome biogenesis markers in rodent skeletal muscle. BMC Research Notes, 10(1), 399.
Ruple, B. A., Godwin, J. S., Mesquita, P. H. C., Osburn, S. C., Sexton, C. L., Smith, M. A., Ogletree, J. C., Goodlett, M. D., Edison, J. L., Ferrando, A. A., Fruge, A. D., Kavazis, A. N., Young, K. C., & Roberts, M. D. (2021). Myofibril and mitochondrial area changes in type I and II fibers following 10 weeks of resistance training in previously untrained men. Frontiers Physiology, 12, 728683.
Ruple, B. A., Godwin, J. S., Mesquita, P. H. C., Osburn, S. C., Vann, C. G., Lamb, D. A., Sexton, C. L., Candow, D. G., Forbes, S. C., Fruge, A. D., Kavazis, A. N., Young, K. C., Seaborne, R. A., Sharples, A. P., & Roberts, M. D. (2021). Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle. Faseb Journal, 35(9), e21864.
Ruple, B. A., Mesquita, P. H. C., Godwin, J. S., Sexton, C. L., Osburn, S. C., McIntosh, M. C., Kavazis, A. N., Libardi, C. A., Young, K. C., & Roberts, M. D. (2022). Changes in vastus lateralis fibre cross-sectional area, pennation angle and fascicle length do not predict changes in muscle cross-sectional area. Experimental Physiology, 107(11), 1216-1224.
Ruple, B. A., Smith, M. A., Osburn, S. C., Sexton, C. L., Godwin, J. S., Edison, J. L., Poole, C. N., Stock, M. S., Fruge, A. D., Young, K. C., & Roberts, M. D. (2022). Comparisons between skeletal muscle imageing techniques and histology in tracking midthigh hypertrophic adaptations following 10 wk of resistance training. Journal of Applied Physiology (1985), 133(2), 416-425.
Ryan, M. T., & Hoogenraad, N. J. (2007). Mitochondrial-nuclear communications. Annual Review of Biochemistry, 76(1), 701-722.
Salvadego, D., Domenis, R., Lazzer, S., Porcelli, S., Rittweger, J., Rizzo, G., Mavelli, I., Simunic, B., Pisot, R., & Grassi, B. (2013). Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training. Journal of Applied Physiology (1985), 114(11), 1527-1535.
Skelly, L. E., Gillen, J. B., Frankish, B. P., MacInnis, M. J., Godkin, F. E., Tarnopolsky, M. A., Murphy, R. M., & Gibala, M. J. (2021). Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes. Journal of Applied Physiology (1985), 130(4), 1001-1014.
Snijders, T., Verdijk, L. B., Hansen, D., Dendale, P., & van Loon, L. J. (2011). Continuous endurance-type exercise training does not modulate satellite cell content in obese type 2 diabetes patients. Muscle & Nerve, 43(3), 393-401.
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L., & Angelini, C. (2012). Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature Protocols, 7(6), 1235-1246.
Stefanetti, R. J., Lamon, S., Wallace, M., Vendelbo, M. H., Russell, A. P., & Vissing, K. (2015). Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Archiv: European journal of physiology, 467(7), 1523-1537.
Tang, J. E., Hartman, J. W., & Phillips, S. M. (2006). Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Applied Physiology, Nutrition and Metabolism, 31(5), 495-501.
Thomas, A. C. Q., Brown, A., Hatt, A. A., Manta, K., Costa-Parke, A., Kamal, M., Joanisse, S., McGlory, C., Phillips, S. M., Kumbhare, D., & Parise, G. (2022). Short-term aerobic conditioning prior to resistance training augments muscle hypertrophy and satellite cell content in healthy young men and women. Faseb Journal, 36(9), e22500.
Trounce, I. A., Kim, Y. L., Jun, A. S., & Wallace, D. C. (1996). Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods in Enzymology, 264, 484-509.
Wen, Y., Murach, K. A., Vechetti, I. J., Jr., Fry, C. S., Vickery, C., Peterson, C. A., McCarthy, J. J., & Campbell, K. S. (2018). MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. Journal of Applied Physiology (1985), 124(1), 40-51.
Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., & Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. The Journal of Physiology, 586(15), 3701-3717.
Zourdos, M. C., Klemp, A., Dolan, C., Quiles, J. M., Schau, K. A., Jo, E., Helms, E., Esgro, B., Duncan, S., Garcia Merino, S., & Blanco, R. (2016). Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. Journal of Strength and Conditioning Research, 30(1), 267-275.