Molecular basis for ubiquitin/Fubi cross-reactivity in USP16 and USP36.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 04 01 2023
accepted: 21 06 2023
medline: 30 10 2023
pubmed: 14 7 2023
entrez: 14 7 2023
Statut: ppublish

Résumé

Ubiquitin and ubiquitin-like proteins typically use distinct machineries to facilitate diverse functions. The immunosuppressive ubiquitin-like protein Fubi is synthesized as an N-terminal fusion to a ribosomal protein (Fubi-S30). Its proteolytic maturation by the nucleolar deubiquitinase USP36 is strictly required for translationally competent ribosomes. What endows USP36 with this activity, how Fubi is recognized and whether other Fubi proteases exist are unclear. Here, we report a chemical tool kit that facilitated the discovery of dual ubiquitin/Fubi cleavage activity in USP16 in addition to USP36 by chemoproteomics. Crystal structures of USP36 complexed with Fubi and ubiquitin uncover its substrate recognition mechanism and explain how other deubiquitinases are restricted from Fubi. Furthermore, we introduce Fubi C-terminal hydrolase measurements and reveal a synergistic role of USP16 in Fubi-S30 maturation. Our data highlight how ubiquitin/Fubi specificity is achieved in a subset of human deubiquitinases and open the door to a systematic investigation of the Fubi system.

Identifiants

pubmed: 37443395
doi: 10.1038/s41589-023-01388-1
pii: 10.1038/s41589-023-01388-1
pmc: PMC10611586
doi:

Substances chimiques

Ubiquitin 0
Ubiquitin Thiolesterase EC 3.4.19.12
Ubiquitins 0
Endopeptidases EC 3.4.-
USP16 protein, human 0
USP36 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1394-1405

Subventions

Organisme : Max-Planck-Gesellschaft (Max Planck Society)
ID : CGC-III-352S
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 424228829 - SFB1430

Informations de copyright

© 2023. The Author(s).

Références

Dikic, I. & Schulman, B. A. An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24, 273–287 (2022).
pubmed: 36284179 pmcid: 9595094
Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989).
pubmed: 2538753
Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).
pubmed: 15571815
Lacombe, T. et al. Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Mol. Microbiol. 72, 69–84 (2009).
pubmed: 19210616
Vanden Broeck, A. & Klinge, S. An emerging mechanism for the maturation of the small subunit processome. Curr. Opin. Struct. Biol. 73, 102331 (2022).
pubmed: 35176592
Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).
pubmed: 19352404 pmcid: 2712597
Cappadocia, L. & Lima, C. D. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem. Rev. 118, 889–918 (2018).
pubmed: 28234446
Gorka, M., Magnussen, H. M. & Kulathu, Y. Chemical biology tools to study deubiquitinases and Ubl proteases. Semin. Cell Dev. Biol. 132, 86–96 (2022).
pubmed: 35216867
Pruneda, J. N. et al. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261–276 (2016).
pubmed: 27425412 pmcid: 4961225
Akutsu, M., Ye, Y., Virdee, S., Chin, J. W. & Komander, D. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl Acad. Sci. USA 108, 2228–2233 (2011).
pubmed: 21266548 pmcid: 3038727
Clague, M. J., Urbe, S. & Komander, D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352 (2019).
pubmed: 30733604
Sahtoe, D. D. & Sixma, T. K. Layers of DUB regulation. Trends Biochem. Sci. 40, 456–467 (2015).
pubmed: 26073511
Shin, D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587, 657–662 (2020).
pubmed: 32726803 pmcid: 7116779
Klemm, T. et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 39, e106275 (2020).
pubmed: 32845033 pmcid: 7461020
Basters, A. et al. Structural basis of the specificity of USP18 toward ISG15. Nat. Struct. Mol. Biol. 24, 270–278 (2017).
pubmed: 28165509 pmcid: 5405867
Yuan, L. et al. Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Nat. Commun. 13, 4880 (2022).
pubmed: 35986001 pmcid: 9391358
Truongvan, N., Li, S., Misra, M., Kuhn, M. & Schindelin, H. Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Nat. Commun. 13, 4789 (2022).
pubmed: 35970836 pmcid: 9378703
Pickard, M. FAU (Finkel–Biskis–Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed). Atlas of Genetics and Cytogenetics in Oncology and Haematology https://atlasgeneticsoncology.org/gene/40538/ (2011).
Olvera, J. & Wool, I. G. The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30. J. Biol. Chem. 268, 17967–17974 (1993).
pubmed: 8394356
Kas, K., Michiels, L. & Merregaert, J. Genomic structure and expression of the human FAU gene: encoding the ribosomal protein S30 fused to a ubiquitin-like protein. Biochem. Biophys. Res. Commun. 187, 927–933 (1992).
pubmed: 1326960
Aleshin, V. V., Konstantinova, A. V., Mikhailov, K. V., Nikitin, M. A. & Petrov, N. B. Do we need many genes for phylogenetic inference? Biochemistry 72, 1313–1323 (2007).
pubmed: 18205615
van den Heuvel, J. et al. Processing of the ribosomal ubiquitin-like fusion protein Fubi-eS30/FAU is required for 40S maturation and depends on USP36. eLife 10, e70560 (2021).
pubmed: 34318747 pmcid: 8354635
Nakamura, M., Tsunematsu, T. & Tanigawa, Y. TCR-α chain-like molecule is involved in the mechanism of antigen-non-specific suppression of a ubiquitin-like protein. Immunology 94, 142–148 (1998).
pubmed: 9741334 pmcid: 1364198
Nakamura, M. & Tanigawa, Y. Characterization of ubiquitin-like polypeptide acceptor protein, a novel pro-apoptotic member of the Bcl2 family. Eur. J. Biochem. 270, 4052–4058 (2003).
pubmed: 14519116
Nakamura, M. & Shimosaki, S. The ubiquitin-like protein monoclonal nonspecific suppressor factor β conjugates to endophilin II and regulates phagocytosis. FEBS J. 276, 6355–6363 (2009).
pubmed: 19796172
Nakamura, M., Watanabe, N. & Notsu, K. Ubiquitin-like protein MNSFβ covalently binds to cytosolic 10-formyltetrahydrofolate dehydrogenase and regulates thymocyte function. Biochem. Biophys. Res. Commun. 464, 1096–1100 (2015).
pubmed: 26192119
Wang, J., Huang, Z. P., Nie, G. Y., Salamonsen, L. A. & Shen, Q. X. Immunoneutralization of endometrial monoclonal nonspecific suppressor factor β (MNSFβ) inhibits mouse embryo implantation in vivo. Mol. Reprod. Dev. 74, 1419–1427 (2007).
pubmed: 17393421
Pickard, M. R. et al. Dysregulated expression of FAU and MELK is associated with poor prognosis in breast cancer. Breast Cancer Res. 11, R60 (2009).
pubmed: 19671159 pmcid: 2750122
Nakamura, M., Ogawa, H. & Tsunematsu, T. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF). Cell Immunol. 130, 281–290 (1990).
pubmed: 2208300
Nakamura, M. & Tanigawa, Y. Biochemical analysis of the receptor for ubiquitin-like polypeptide. J. Biol. Chem. 274, 18026–18032 (1999).
pubmed: 10364253
Nakamura, M., Xavier, R. M., Tsunematsu, T. & Tanigawa, Y. Molecular cloning and characterization of a cDNA encoding monoclonal nonspecific suppressor factor. Proc. Natl Acad. Sci. USA 92, 3463–3467 (1995).
pubmed: 7724584 pmcid: 42187
Xavier, R., Nakamura, M., Kobayashi, S., Ishikura, H. & Tanigawa, Y. Human nonspecific suppressor factor (hNSF): cell source and effects on T and B lymphocytes. Immunobiology 192, 262–271 (1995).
pubmed: 7782099
Nakamura, M. & Tanigawa, Y. Ubiquitin-like polypeptide conjugates to acceptor proteins in concanavalin A- and interferon γ-stimulated T-cells. Biochem. J. 330, 683–688 (1998).
pubmed: 9480875 pmcid: 1219190
Nakamura, M. & Yamaguchi, S. The ubiquitin-like protein MNSFβ regulates ERK–MAPK cascade. J. Biol. Chem. 281, 16861–16869 (2006).
pubmed: 16621790
Urbe, S. et al. Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Mol. Biol. Cell 23, 1095–1103 (2012).
pubmed: 22298430 pmcid: 3302736
Endo, A. et al. Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J. Cell Sci. 122, 678–686 (2009).
pubmed: 19208757
Ryu, H. et al. The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. EMBO Rep. 22, e50684 (2021).
pubmed: 33852194 pmcid: 8183414
Palmer, J. T., Rasnick, D., Klaus, J. L. & Bromme, D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 38, 3193–3196 (1995).
pubmed: 7650671
Borodovsky, A. et al. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187–5196 (2001).
pubmed: 11566882 pmcid: 125629
Hewings, D. S., Flygare, J. A., Bogyo, M. & Wertz, I. E. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. FEBS J. 284, 1555–1576 (2017).
pubmed: 28196299 pmcid: 7163952
Hewings, D. S. et al. Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes. Nat. Commun. 9, 1162 (2018).
pubmed: 29563501 pmcid: 5862848
Wilkinson, K. D., Gan-Erdene, T. & Kolli, N. Derivitization of the C-terminus of ubiquitin and ubiquitin-like proteins using intein chemistry: methods and uses. Methods Enzymol. 399, 37–51 (2005).
pubmed: 16338347
Ekkebus, R. et al. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc. 135, 2867–2870 (2013).
pubmed: 23387960 pmcid: 3585465
Sen Nkwe, N. et al. A potent nuclear export mechanism imposes USP16 cytoplasmic localization during interphase. J. Cell Sci. 133, jcs239236 (2020).
pubmed: 32005696
Montellese, C. et al. USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit. eLife 9, e54435 (2020).
pubmed: 32129764 pmcid: 7065907
Adorno, M. et al. USP16 contributes to somatic stem-cell defects in Down’s syndrome. Nature 501, 380–384 (2013).
pubmed: 24025767 pmcid: 3816928
Sun, X. X. et al. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc. Natl Acad. Sci. USA 112, 3734–3739 (2015).
pubmed: 25775507 pmcid: 4378440
Yu, J. S. et al. Substrate-specific recognition of IKKs mediated by USP16 facilitates autoimmune inflammation. Sci. Adv. 7, eabc4009 (2021).
pubmed: 33523871 pmcid: 7806237
Hassiepen, U. et al. A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate. Anal. Biochem. 371, 201–207 (2007).
pubmed: 17869210
Ye, Y., Scheel, H., Hofmann, K. & Komander, D. Dissection of USP catalytic domains reveals five common insertion points. Mol. Biosyst. 5, 1797–1808 (2009).
pubmed: 19734957
Gersch, M. et al. Distinct USP25 and USP28 oligomerization states regulate deubiquitinating activity. Mol. Cell 74, 436–451 (2019).
pubmed: 30926242 pmcid: 6509359
Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002).
pubmed: 12507430
Samara, N. L. et al. Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328, 1025–1029 (2010).
pubmed: 20395473 pmcid: 4220450
Kohler, A., Zimmerman, E., Schneider, M., Hurt, E. & Zheng, N. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141, 606–617 (2010).
pubmed: 20434206 pmcid: 2901531
Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).
pubmed: 22524316
Ye, Y. et al. Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep. 12, 350–357 (2011).
pubmed: 21399617 pmcid: 3077245
Bohnsack, K. E. & Bohnsack, M. T. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 38, e100278 (2019).
pubmed: 31268599 pmcid: 6600647
Williamson, N. A., Raliegh, J., Morrice, N. A. & Wettenhall, R. E. Post-translational processing of rat ribosomal proteins. Ubiquitous methylation of Lys 22 within the zinc-finger motif of RL40 (carboxy-terminal extension protein 52) and tissue-specific methylation of Lys 4 in RL29. Eur. J. Biochem. 246, 786–793 (1997).
pubmed: 9219540
Yeh, C. W. et al. The C-degron pathway eliminates mislocalized proteins and products of deubiquitinating enzymes. EMBO J. 40, e105846 (2021).
pubmed: 33469951 pmcid: 8013793
Baker, R. T., Williamson, N. A. & Wettenhall, R. E. The yeast homolog of mammalian ribosomal protein S30 is expressed from a duplicated gene without a ubiquitin-like protein fusion sequence. Evolutionary implications. J. Biol. Chem. 271, 13549–13555 (1996).
pubmed: 8662789
Hemelaar, J. et al. Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol. Cell. Biol. 24, 84–95 (2004).
pubmed: 14673145 pmcid: 303361
Turnbull, A. P. et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550, 481–486 (2017).
pubmed: 29045389 pmcid: 6029662
Gjonaj, L. et al. Development of a DUB-selective fluorogenic substrate. Chem. Sci. 10, 10290–10296 (2019).
pubmed: 32110315 pmcid: 6988746
Gersch, M. et al. Mechanism and regulation of the Lys 6-selective deubiquitinase USP30. Nat. Struct. Mol. Biol. 24, 920–930 (2017).
pubmed: 28945249 pmcid: 5757785
Friese, A. et al. Chemical genetics reveals a role of dCTP pyrophosphatase 1 in Wnt signaling. Angew. Chem. Int. Ed. Engl. 58, 13009–13013 (2019).
pubmed: 31173446
Beilsten-Edmands, J. et al. Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling. Acta Crystallogr. D Struct. Biol. 76, 385–399 (2020).
pubmed: 32254063 pmcid: 7137103
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692 pmcid: 2815665
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crysallogr. 69, 1204–1214 (2013).
McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).
pubmed: 17164524
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313
Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472
Afonine, P. V. et al. Towards automated crystallographic structure refinement with Phenix.Refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).
pubmed: 22505256 pmcid: 3322595
Grethe, C. et al. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat. Commun. 13, 5950 (2022).
pubmed: 36216817 pmcid: 9549030
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712
Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).
pubmed: 27166375 pmcid: 4987940

Auteurs

Rachel O'Dea (R)

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Nafizul Kazi (N)

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Alicia Hoffmann-Benito (A)

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Zhou Zhao (Z)

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Sarah Recknagel (S)

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Kim Wendrich (K)

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Petra Janning (P)

Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.

Malte Gersch (M)

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany. malte.gersch@mpi-dortmund.mpg.de.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany. malte.gersch@mpi-dortmund.mpg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH