Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Jul 2023
05 Jul 2023
Historique:
received:
27
02
2023
accepted:
14
06
2023
medline:
6
7
2023
pubmed:
6
7
2023
entrez:
5
7
2023
Statut:
epublish
Résumé
Rapid, high-fidelity single-shot readout of quantum states is a ubiquitous requirement in quantum information technologies. For emitters with a spin-preserving optical transition, spin readout can be achieved by driving the transition with a laser and detecting the emitted photons. The speed and fidelity of this approach is typically limited by low photon collection rates and measurement back-action. Here we use an open microcavity to enhance the optical readout signal from a semiconductor quantum dot spin state, largely overcoming these limitations. We achieve single-shot readout of an electron spin in only 3 nanoseconds with a fidelity of (95.2 ± 0.7)%, and observe quantum jumps using repeated single-shot measurements. Owing to the speed of our readout, errors resulting from measurement-induced back-action have minimal impact. Our work reduces the spin readout-time well below both the achievable spin relaxation and dephasing times in semiconductor quantum dots, opening up new possibilities for their use in quantum technologies.
Identifiants
pubmed: 37407552
doi: 10.1038/s41467-023-39568-1
pii: 10.1038/s41467-023-39568-1
pmc: PMC10322905
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3977Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 200020_204069
Informations de copyright
© 2023. The Author(s).
Références
Science. 2009 Jul 3;325(5936):70-2
pubmed: 19574387
Science. 2016 Oct 28;354(6311):434-437
pubmed: 27608669
Nat Commun. 2022 Jul 13;13(1):4048
pubmed: 35831368
Nature. 2019 Nov;575(7784):622-627
pubmed: 31634901
Nature. 2010 Sep 16;467(7313):297-300
pubmed: 20844531
Phys Rev Lett. 2012 Sep 7;109(10):107401
pubmed: 23005324
Nature. 2021 Mar;591(7851):580-585
pubmed: 33762771
Science. 2010 Jul 30;329(5991):542-4
pubmed: 20595582
Science. 2006 Apr 28;312(5773):551-3
pubmed: 16601152
Nature. 2008 Nov 13;456(7219):218-21
pubmed: 19005550
Rev Sci Instrum. 2013 Jul;84(7):073905
pubmed: 23902082
Phys Rev Lett. 1986 Oct 6;57(14):1699-1702
pubmed: 10033522
Science. 2018 Nov 9;362(6415):662-665
pubmed: 30237247
Nat Commun. 2020 Mar 30;11(1):1605
pubmed: 32231204
Nature. 2005 Mar 10;434(7030):169-76
pubmed: 15758991
Phys Rev Lett. 2007 Aug 31;99(9):097401
pubmed: 17931035
Nature. 2022 Sep;609(7929):919-924
pubmed: 36171383
Nature. 2004 Jul 22;430(6998):431-5
pubmed: 15269762
Phys Rev Lett. 2012 Dec 14;109(24):240502
pubmed: 23368293
Nature. 2015 Oct 29;526(7575):682-6
pubmed: 26503041
Phys Rev Lett. 2014 Mar 21;112(11):116802
pubmed: 24702401
Nature. 2018 Mar 29;555(7698):633-637
pubmed: 29443962
Nat Mater. 2016 Sep;15(9):981-6
pubmed: 27454044
Nano Lett. 2020 Mar 11;20(3):1631-1636
pubmed: 32023065
Sci Adv. 2020 Dec 9;6(50):
pubmed: 33298444
Phys Rev Lett. 2005 May 20;94(19):197402
pubmed: 16090209
Phys Rev Lett. 2007 Nov 2;99(18):187402
pubmed: 17995437
Nat Nanotechnol. 2022 Aug;17(8):829-833
pubmed: 35589820
Phys Rev Lett. 2009 Sep 11;103(11):113602
pubmed: 19792371
Science. 2019 Apr 5;364(6435):62-66
pubmed: 30792358
Nature. 2022 Aug;608(7924):677-681
pubmed: 36002484
Phys Rev Lett. 2019 Dec 20;123(25):250503
pubmed: 31922765
Nat Photonics. 2023;17(4):324-329
pubmed: 37064524
Nature. 2020 Apr;580(7802):201-204
pubmed: 32269343
Nat Nanotechnol. 2021 Apr;16(4):399-403
pubmed: 33510454