Structure elucidation and characterization of patulin synthase, insights into the formation of a fungal mycotoxin.
Aspergillus niger
biosynthesis
flavoenzyme
mycotoxin
patulin synthase
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
revised:
06
04
2023
received:
10
02
2023
accepted:
24
04
2023
medline:
2
11
2023
pubmed:
27
6
2023
entrez:
27
6
2023
Statut:
ppublish
Résumé
Patulin synthase (PatE) from Penicillium expansum is a flavin-dependent enzyme that catalyses the last step in the biosynthesis of the mycotoxin patulin. This secondary metabolite is often present in fruit and fruit-derived products, causing postharvest losses. The patE gene was expressed in Aspergillus niger allowing purification and characterization of PatE. This confirmed that PatE is active not only on the proposed patulin precursor ascladiol but also on several aromatic alcohols including 5-hydroxymethylfurfural. By elucidating its crystal structure, details on its catalytic mechanism were revealed. Several aspects of the active site architecture are reminiscent of that of fungal aryl-alcohol oxidases. Yet, PatE is most efficient with ascladiol as substrate confirming its dedicated role in biosynthesis of patulin.
Substances chimiques
Patulin
95X2BV4W8R
Banques de données
RefSeq
['AIG62134.1', 'AAC72747.1']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5114-5126Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Références
Demirel R, Sariozlu NY & Semra İ (2013) Polymerase chain reaction (PCR) Terverticillate Penicillium species agricultural soils in Eskişehir Province. Brazilian Arch Biol Technol 56, 980-984.
Gutarowska B, Kosmowska M, Wiszniewska M, Pałczyński C & Walusiak-Skorupa J (2012) An investigation of allergenic proteins produced by moulds on building materials. Indoor Built Environ 21, 253-263.
Li B, Chen Y, Zong Y, Shang Y, Zhang Z, Xu X, Wang X, Long M & Tian S (2019) Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum. Environ Microbiol 21, 1124-1139.
Puel O, Galtier P & Oswald IP (2010) Biosynthesis and toxicological effects of Patulin. Toxins (Basel) 2, 613-631.
Moake MM, Padilla-Zakour OI & Worobo RW (2005) Comprehensive review of Patulin control methods in foods. Compr Rev Food Sci Food Saf 4, 8-21.
Vidal A, Ouhibi S, Ghali R, Hedhili A, De Saeger S & De Boevre M (2019) The mycotoxin patulin: an updated short review on occurrence, toxicity and analytical challenges. Food Chem Toxicol 129, 249-256.
Saleh I & Goktepe I (2019) The characteristics, occurrence, and toxicological effects of patulin. Food Chem Toxicol 129, 301-311.
Morales H, Marín S, Ramos AJ & Sanchis V (2010) Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: a review. Food Control 21, 953-962.
Tannous J, Keller NP, Atoui A, El Khoury A, Lteif R, Oswald IP & Puel O (2018) Secondary metabolism in Penicillium expansum: emphasis on recent advances in patulin research. Crit Rev Food Sci Nutr 58, 2082-2098.
Varga J, Rigó K, Tóth B, Téren J & Kozakiewicz Z (2003) Evolutionary relationships among Aspergillus species producing economically important mycotoxins. Food Technol Biotechnol 41, 29-36.
Dombrink-Kurtzman MA & Engberg AE (2006) Byssochlamys nivea with patulin-producing capability has an isoepoxydon dehydrogenase gene (idh) with sequence homology to Penicillium expansum and P. griseofulvum. Mycol Res 110, 1111-1118.
Samson RA, Houbraken J, Varga J & Frisvad JC (2009) Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia 22, 14-27.
Houbraken J, Samson RA & Frisvad JC (2005) Byssochlamys: significance of heat resistance and mycotoxin production. Adv Exp Med Biol 571, 211-224.
Frisvad JC, Smedsgaard J, Larsen TO & Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 2004, 201-241.
Dijkman WP, De Gonzalo G, Mattevi A & Fraaije MW (2013) Flavoprotein oxidases: classification and applications. Appl Microbiol Biotechnol 97, 5177-5188.
Fraaije MW & Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25, 126-132.
Sützl L, Foley G, Gillam EMJ, Bodén M & Haltrich D (2019) The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol Biofuels 12, 1-18.
Nguyen QT, Romero E, Dijkman WP, De Vasconcellos SP, Binda C, Mattevi A & Fraaije MW (2018) Structure-based engineering of Phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol. Biochemistry 57, 6209-6218.
Dijkman WP & Fraaije MW (2014) Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl Environ Microbiol 80, 1082-1090.
Arentshorst M, Valappil PK, Mózsik L, Regensburg-Tuïnk TJG, Seekles S, Tjallinks G, Fraaije MW, Visser J & Ram AFJ (2023) A CRISPR/Cas9-based multicopy integration system for protein production in Aspergillus niger. FEBS J 290, 5127-5140.
Lykakis IN, Zaravinos IP, Raptis C & Stratakis M (2009) Divergent synthesis of the co-isolated mycotoxins longianone, isopatulin, and (Z)-ascladiol via furan oxidation. J Org Chem 74, 6339-6342.
Martin C, Ovalle Maqueo A, Wijma HJ & Fraaije MW (2018) Creating a more robust 5-hydroxymethylfurfural oxidase by combining computational predictions with a novel effective library design. Biotechnol Biofuels 11, 1-9.
Del Poeta M, Schell WA, Dykstra CC, Jones S, Tidwell RR, Czarny A, Bajic M, Bajic M, Kumar A, Boykin D et al. (1998) Structure-In vitro activity relationships of Pentamidine analogues and Dication-substituted Bis-Benzimidazoles as new antifungal agents. Antimicrob Agents Chemother 42, 2495-2502.
Richter DT & Lash TD (1999) Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the “4+1” synthesis of sapphyrins. Tetrahedron Lett 40, 6735-6738.
Xiang T, Liu X, Yi P, Guo M, Chen Y, Wesdemiotis C, Xu J & Pang Y (2013) Schiff base polymers derived from 2,5-diformylfuran. Polym Int 62, 1517-1523.
Amarasekara AS, Green D & McMillan E (2008) Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts. Catal Commun 9, 286-288.
Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126-2132.
Kiess M, Hecht H-J & Kalisz HM (1998) Glucose oxidase from Penicillium amagasakiense. Eur J Biochem 252, 90-99.
Carro J, Martínez-Júlvez M, Medina M, Martínez AT & Ferreira P (2017) Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase. Phys Chem Chem Phys 19, 28666-28675.
Gadda G (2008) Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases. Biochemistry 47, 13745-13753.
Wongnate T & Chaiyen P (2013) The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. FEBS J 280, 3009-3027.
Ferreira P, Hernández-Ortega A, Lucas F, Carro J, Herguedas B, Borrelli KW, Guallar V, Martínez AT & Medina M (2015) Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. FEBS J 282, 3091-3106.
Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V & Martínez AT (2011) Modulating O2 reactivity in a fungal flavoenzyme: involvement of aryl-alcohol oxidase Phe-501 contiguous to catalytic histidine. J Biol Chem 286, 41105-41114.
Carro J, Amengual-Rigo P, Sancho F, Medina M, Guallar V, Ferreira P & Martínez AT (2018) Multiple implications of an active site phenylalanine in the catalysis of aryl-alcohol oxidase. Sci Rep 8, 1-12.
Ruiz-Dueñas FJ, Ferreira P, Martínez MJ & Martínez AT (2006) In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme. Protein Expr Purif 45, 191-199.
Peter Macheroux (1999) UV-visible spectroscopy as a tool to study flavoproteins. Methods Mol Biol 131, 1-7.
Forneris F, Orru R, Bonivento D, Chiarelli LR & Mattevi A (2009) ThermoFAD, a Thermofluor®-adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J 276, 2833-2840.
Vojinović V, Azevedo AM, Martins VCB, Cabral JMS, Gibson TD & Fonseca LP (2004) Assay of H2O2 by HRP catalysed co-oxidation of phenol-4-sulphonic acid and 4-aminoantipyrine: characterisation and optimisation. J Mol Catal B Enzym 28, 129-135.
Copeland RA (2000) Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. Wiley, Hoboken, NJ.
Bowler MW, Nurizzo D, Barrett R, Beteva A, Bodin M, Caserotto H, Delagenière S, Dobias F, Flot D, Giraud T et al. (2015) MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. J Synchrotron Radiat 22, 1540-1547.
Battye TGG, Kontogiannis L, Johnson O, Powell HR & Leslie AGW (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D 67, 271-281.
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40, 658-674.
Kovalevskiy O, Nicholls RA, Long F, Carlon A & Murshudov GN (2018) Overview of refinement procedures within REFMAC 5: utilizing data from different sources. Acta Crystallogr D 74, 215-227.