Cardiotoxicity in children with cancer treated with anthracyclines: A position statement on dexrazoxane.
anthracyclines
cardioprotection
cardiotoxicity
childhood cancer survivors
dexrazoxane
doxorubicin
Journal
Pediatric blood & cancer
ISSN: 1545-5017
Titre abrégé: Pediatr Blood Cancer
Pays: United States
ID NLM: 101186624
Informations de publication
Date de publication:
25 Jun 2023
25 Jun 2023
Historique:
revised:
09
06
2023
received:
10
11
2022
accepted:
10
06
2023
medline:
25
6
2023
pubmed:
25
6
2023
entrez:
25
6
2023
Statut:
aheadofprint
Résumé
Cardiovascular disease is the leading cause of non-malignant morbidity and mortality in childhood cancer survivors (CCSs). Anthracyclines are included in many treatment regimens for paediatric cancer, but unfortunately, these compounds are cardiotoxic. One in 10 CCSs who has received an anthracycline will develop a symptomatic cardiac event over time. Given the crucial need to mitigate anthracycline-related cardiotoxicity (ARC), the authors critically examined published data to identify effective cardioprotective strategies. Based on their expert analysis of contemporary literature data, it was concluded that consideration should be given for routine use of dexrazoxane in children with cancer who are at risk of ARC.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e30515Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Armenian S, Bhatia S. Predicting and preventing anthracycline-related cardiotoxicity. Am Soc Clin Oncol Educ Book. 2018;38:3-12. doi:10.1200/EDBK_100015
Bansal N, Amdani S, Lipshultz ER, Lipshultz SE. Chemotherapy-induced cardiotoxicity in children. Expert Opin Drug Metab Toxicol. 2017;13(8):817-832. doi:10.1080/17425255.2017.1351547
Vejpongsa P, Yeh ET. Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther. 2014;95(1):45-52. doi:10.1038/clpt.2013.201
Tripaydonis A, Conyers R, Elliott DA. Pediatric anthracycline-induced cardiotoxicity: mechanisms, pharmacogenomics, and pluripotent stem-cell modeling. Clin Pharmacol Ther. 2019;105(3):614-624. doi:10.1002/cpt.1311
Licata S, Saponiero A, Mordente A, Minotti G. Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol. 2000;13(5):414-420. doi:10.1021/tx000013q
Feijen EAM, Leisenring WM, Stratton KL, et al. Derivation of anthracycline and anthraquinone equivalence ratios to doxorubicin for late-onset cardiotoxicity. JAMA Oncol. 2019;5(6):864-871. doi:10.1001/jamaoncol.2018.6634
Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229-4361. doi:10.1093/eurheartj/ehac244
Feijen EAM, van Dalen EC, van der Pal HJH, et al. Increased risk of cardiac ischaemia in a pan-European cohort of 36 205 childhood cancer survivors: a PanCareSurFup study. Heart. 2021;107(1):33-40. doi:10.1136/heartjnl-2020-316655
Bagnasco F, Caruso S, Andreano A, et al. Late mortality and causes of death among 5-year survivors of childhood cancer diagnosed in the period 1960-1999 and registered in the Italian Off-Therapy Registry. Eur J Cancer. 2019;110:86-97. doi:10.1016/j.ejca.2018.12.021
Janeway KA, Grier HE. Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol. 2010;11(7):670-678. doi:10.1016/S1470-2045(10)70062-0
Brown TR, Vijarnsorn C, Potts J, Milner R, Sandor GG, Fryer C. Anthracycline induced cardiac toxicity in pediatric Ewing sarcoma: a longitudinal study. Pediatr Blood Cancer. 2013;60(5):842-848. doi:10.1002/pbc.24404
Shaikh F, Dupuis LL, Alexander S, Gupta A, Mertens L, Nathan PC. Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2016;108(4):djv357. doi:10.1093/jnci/djv357
Feijen EAML, Font-Gonzalez A, Van der Pal HJH, et al. Risk and temporal changes of heart failure among 5-year childhood cancer survivors: a DCOG-LATER study. J Am Heart Assoc. 2019;8(1):e009122. doi:10.1161/JAHA.118.009122
Leerink JM, van der Pal HJH, Kremer LCM, et al. Refining the 10-year prediction of left ventricular systolic dysfunction in long-term survivors of childhood cancer. JACC CardioOncol. 2021;3(1):62-72. doi:10.1016/j.jaccao.2020.11.013
Armenian SH, Hudson MM, Chen MH, et al. Rationale and design of the Children's Oncology Group (COG) study ALTE1621: a randomized, placebo-controlled trial to determine if low-dose carvedilol can prevent anthracycline-related left ventricular remodeling in childhood cancer survivors at high risk for developing heart failure. BMC Cardiovasc Disord. 2016;16(1):187. doi:10.1186/s12872-016-0364-6
Bansal N, Blanco JG, Sharma UC, Pokharel S, Shisler S, Lipshultz SE. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastasis Rev. 2020;39(1):55-68. doi:10.1007/s10555-020-09859-w
Lipshultz SE, Karnik R, Sambatakos P, Franco VI, Ross SW, Miller TL. Anthracycline-related cardiotoxicity in childhood cancer survivors. Curr Opin Cardiol. 2014;29(1):103-112. doi:10.1097/HCO.0000000000000034
Leger K, Slone T, Lemler M, et al. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr Blood Cancer. 2015;62(1):123-127. doi:10.1002/pbc.25206
Lipshultz SE, Franco VI, Miller TL, Colan SD, Sallan SE. Cardiovascular disease in adult survivors of childhood cancer. Annu Rev Med. 2015;66:161-176. doi:10.1146/annurev-med-070213-054849
Lipshultz SE, Diamond MB, Franco VI, et al. Managing chemotherapy-related cardiotoxicity in survivors of childhood cancers. Paediatr Drugs. 2014;16(5):373-389. doi:10.1007/s40272-014-0085-1
van der Pal HJ, van Dalen EC, van Delden E, et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30(13):1429-1437. doi:10.1200/JCO.2010.33.4730
Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(12):2629-2636. doi:10.1200/JCO.2005.12.121
Feijen EA, Leisenring WM, Stratton KL, et al. Equivalence ratio for daunorubicin to doxorubicin in relation to late heart failure in survivors of childhood cancer. J Clin Oncol. 2015;33(32):3774-3780. doi:10.1200/JCO.2015.61.5187
Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171-190. doi:10.1016/j.annonc.2019.10.023
Franco VI, Lipshultz SE. Cardiac complications in childhood cancer survivors treated with anthracyclines. Cardiol Young. 2015;25(Suppl 2):107-116. doi:10.1017/S1047951115000906
Kremer LC, van Dalen EC. Dexrazoxane in children with cancer: from evidence to practice. J Clin Oncol. 2015;33(24):2594-2596. doi:10.1200/JCO.2015.61.7928
Blanco JG, Sun CL, Landier W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes-a report from the Children's Oncology Group. J Clin Oncol. 2012;30(13):1415-1421. doi:10.1200/JCO.2011.34.8987
Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol. 2012;8(4):647-670. doi:10.2217/fca.12.44
Wagdi P, Rouvinez G, Fluri M, et al. Cardioprotection in chemo- and radiotherapy for malignant diseases-an echocardiographic pilot study]. Praxis (Bern 1994). 1995;84(43):1220-1223.
Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31(29):3673-3680. doi:10.1200/JCO.2013.49.3205
Mulrooney DA, Yeazel MW, Kawashima T, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. doi:10.1136/bmj.b4606
de Ferranti SD, Steinberger J, Ameduri R, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation. 2019;139(13):e603-e634. doi:10.1161/CIR.0000000000000618
Faber J, Wingerter A, Neu MA, et al. Burden of cardiovascular risk factors and cardiovascular disease in childhood cancer survivors: data from the German CVSS-study. Eur Heart J. 2018;39(17):1555-1562. doi:10.1093/eurheartj/ehy026
Iarussi D, Auricchio U, Agretto A, et al. Protective effect of coenzyme Q10 on anthracyclines cardiotoxicity: control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Mol Aspects Med. 1994;15:s207-s212. doi:10.1016/0098-2997(94)90030-2
Waldner R, Laschan C, Lohninger A, et al. Effects of doxorubicin-containing chemotherapy and a combination with L-carnitine on oxidative metabolism in patients with non-Hodgkin lymphoma. J Cancer Res Clin Oncol. 2006;132(2):121-128. doi:10.1007/s00432-005-0054-8
van Dalen EC, Michiels EM, Caron HN, Kremer LC. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. 2010(5):CD005006. doi:10.1002/14651858.CD005006.pub4
Lipshultz SE, Miller TL, Lipsitz SR, et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130(6):1003-1011. doi:10.1542/peds.2012-0727
Loeffen EAH, van Dalen EC, Mulder RL, et al. The duration of anthracycline infusion should be at least one hour in children with cancer: a clinical practice guideline. Pediatr Blood Cancer. 2018;65(2):e26867. doi:10.1002/pbc.26867
Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671-1680. doi:10.1093/eurheartj/ehw022
Heck SL, Mecinaj A, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): extended follow-up of a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Circulation. 2021;143(25):2431-2440. doi:10.1161/CIRCULATIONAHA.121.054698
Meessen JMTA, Cardinale D, Ciceri F, et al. Circulating biomarkers and cardiac function over 3 years after chemotherapy with anthracyclines: the ICOS-ONE trial. ESC Heart Fail. 2020;7(4):1452-1466. doi:10.1002/ehf2.12695
Cardinale D, Ciceri F, Latini R, et al. Anthracycline-induced cardiotoxicity: a multicenter randomised trial comparing two strategies for guiding prevention with enalapril: the International CardioOncology Society-One trial. Eur J Cancer. 2018;94:126-137. doi:10.1016/j.ejca.2018.02.005
Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358(20):2148-2159. doi:10.1056/NEJMra0800239
Pudil R, Mueller C, Čelutkienė J, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail. 2020;22(11):1966-1983. doi:10.1002/ejhf.2017
Mavinkurve-Groothuis AM, Groot-Loonen J, Marcus KA, et al. Myocardial strain and strain rate in monitoring subclinical heart failure in asymptomatic long-term survivors of childhood cancer. Ultrasound Med Biol. 2010;36(11):1783-1791. doi:10.1016/j.ultrasmedbio.2010.08.001
Armstrong GT, Joshi VM, Ness KK, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol. 2015;65(23):2511-2522. doi:10.1016/j.jacc.2015.04.013
Cardinale D, Iacopo F, Cipolla CM. Cardiotoxicity of anthracyclines. Front Cardiovasc Med. 2020;7:26. doi:10.3389/fcvm.2020.00026
Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474-2481. doi:10.1161/CIRCULATIONAHA.106.635144
Gupta V, Kumar Singh S, Agrawal V, Bali Singh T. Role of ACE inhibitors in anthracycline-induced cardiotoxicity: a randomized, double-blind, placebo-controlled trial. Pediatr Blood Cancer. 2018;65(11):e27308. doi:10.1002/pbc.27308
El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607-613. doi:10.1016/j.cardfail.2012.06.416
Children's Oncology Group. ALTE1621: pharmacologic reversal of ventricular remodeling in childhood cancer survivors at risk for heart failure (PREVENT-HF): a phase 2b randomized placebo-controlled (carvedilol) trial. ALTE1621: family protocol summary (childrensoncologygroup.org). Children's Oncology Group.
Upshaw JN. Cardioprotective strategies to prevent cancer treatment-related cardiovascular toxicity: a review. Curr Oncol Rep. 2020;22(7):72. doi:10.1007/s11912-020-00923-w
Menna P, Salvatorelli E. Primary prevention strategies for anthracycline cardiotoxicity: a brief overview. Chemotherapy. 2017;62(3):159-168. doi:10.1159/000455823
O'Brien ME, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440-449. doi:10.1093/annonc/mdh097
Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19(5):1444-1454. doi:10.1200/JCO.2001.19.5.1444
Omland T, Heck SL, Gulati G. The role of cardioprotection in cancer therapy cardiotoxicity: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 2022;4(1):19-37. doi:10.1016/j.jaccao.2022.01.101
Marina NM, Cochrane D, Harney E, et al. Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: a pediatric oncology group study. Clin Cancer Res. 2002;8(2):413-418.
Muñoz A, Maldonado M, Pardo N, Fernández JM, Vela E, Cubells J. Pegylated liposomal doxorubicin hydrochloride (PLD) for advanced sarcomas in children: preliminary results. Pediatr Blood Cancer. 2004;43(2):152-155. doi:10.1002/pbc.20029
Schrappe M, Bleckmann K, Zimmermann M, et al. Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000). J Clin Oncol. 2018;36(3):244-253. doi:10.1200/JCO.2017.74.4946
Jarfelt M, Andersen NH, Hasle H. Is it possible to cure childhood acute myeloid leukaemia without significant cardiotoxicity? Br J Haematol. 2016;175(4):577-587. doi:10.1111/bjh.14374
Cooper TM, Absalon MJ, Alonzo TA, et al. Phase I/II study of CPX-351 followed by fludarabine, cytarabine, and granulocyte-colony stimulating factor for children with relapsed acute myeloid leukemia: a report from the Children's Oncology Group. J Clin Oncol. 2020;38(19):2170-2177. doi:10.1200/JCO.19.03306
Naha B. Heart failure in pediatric oncologic disease - chapter 32. In: Heart Failure in the Child and Young Adult. Academic Press; 2018.
Pritchard-Jones K, Bergeron C, de Camargo B, et al. Omission of doxorubicin from the treatment of stage II-III, intermediate-risk Wilms' tumour (SIOP WT 2001): an open-label, non-inferiority, randomised controlled trial. Lancet. 2015;386(9999):1156-1164. doi:10.1016/S0140-6736(14)62395-3
Bisogno G, Jenney M, Bergeron C, et al. Addition of dose-intensified doxorubicin to standard chemotherapy for rhabdomyosarcoma (EpSSG RMS 2005): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet Oncol. 2018;19(8):1061-1071. doi:10.1016/S1470-2045(18)30337-1
Gaspar N, Hawkins DS, Dirksen U, et al. Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol. 2015;33(27):3036-3046. doi:10.1200/JCO.2014.59.5256
Zsíros J, Maibach R, Shafford E, et al. Successful treatment of childhood high-risk hepatoblastoma with dose-intensive multiagent chemotherapy and surgery: final results of the SIOPEL-3HR study. J Clin Oncol. 2010;28(15):2584-2590. doi:10.1200/JCO.2009.22.4857
Möricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265-284. doi:10.1038/leu.2009.257
Santoro A, Bica MG, Dagnino L, et al. Altered mRNA expression of PAX5 is a common event in acute lymphoblastic leukaemia. Br J Haematol. 2009;146(6):686-689. doi:10.1111/j.1365-2141.2009.07815.x
Bansal N, Amdani SM, Hutchins KK, Lipshultz SE. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018;30(5):628-638. doi:10.1097/MOP.0000000000000675
Barry E, Alvarez JA, Scully RE, Miller TL, Lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8(8):1039-1058. doi:10.1517/14656566.8.8.1039
Cvetković RS, Scott LJ. Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs. 2005;65(7):1005-1024. doi:10.2165/00003495-200565070-00008
Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64(9):938-945. doi:10.1016/j.jacc.2014.06.1167
Lyu YL, Kerrigan JE, Lin CP, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839-8846. doi:10.1158/0008-5472.CAN-07-1649
de Baat EC, Mulder RL, Armenian S, et al. Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines. Cochrane Database Syst Rev. 2022;9(9):CD014638. doi:10.1002/14651858.CD014638.pub2
Chow EJ, Aggarwal S, Doody DR, et al. Dexrazoxane and long-term heart function in survivors of childhood cancer. J Clin Oncol. 2023;41(12):2248-2257. doi:10.1200/JCO.22.02423
Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol. 2007;25(5):493-500. doi:10.1200/JCO.2005.02.3879
Schwartz CL, Constine LS, Villaluna D, et al. A risk-adapted, response-based approach using ABVE-PC for children and adolescents with intermediate- and high-risk Hodgkin lymphoma: the results of P9425. Blood. 2009;114(10):2051-2059. doi:10.1182/blood-2008-10-184143
Salzer WL, Devidas M, Carroll WL, et al. Long-term results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984-2001: a report from the children's oncology group. Leukemia. 2010;24(2):355-370. doi:10.1038/leu.2009.261
EMEA/H/A-31/1275. Assessment report: dexrazoxane-containing medicinal products. Dexrazoxane Art 31 referral - AR for Publication (europa.eu). European Medicines Agency, EU. https://www.ema.europa.eu/en/documents/referral/dexrazoxane-h-31-1275-article-31-referral-assessment-report_en.pdf
Dexrazoxane for preventing cardiotoxicity in children and young people (under 25 years) receiving high-dose anthracyclines or related drugs for the treatment of cancer. NHS England. Accesed 6 March 2020. https://www.england.nhs.uk/publication/dexrazoxane-for-preventing-cardiotoxicity-in-children-and-young-people-under-25-years-receiving-high-dose-anthracyclines-or-related-drugs-for-the-treatment-of-cancer/
Lipshultz SE. Letter by Lipshultz regarding article, “anthracycline cardiotoxicity: worrisome enough to have you quaking?” Circ Res. 2018;122(7):e62-e63. doi:10.1161/CIRCRESAHA.118.312918
Reichardt P, Tabone MD, Mora J, Morland B, Jones RL. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncol. 2018;14(25):2663-2676. doi:10.2217/fon-2018-0210
Kopp LM, Womer RB, Schwartz CL, et al. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: a report from the Children's Oncology Group. Cardiooncology. 2019;5:15. doi:10.1186/s40959-019-0050-9
Seif AE, Walker DM, Li Y, et al. Dexrazoxane exposure and risk of secondary acute myeloid leukemia in pediatric oncology patients. Pediatr Blood Cancer. 2015;62(4):704-709. doi:10.1002/pbc.25043
Lipshultz SE, Law YM, Asante-Korang A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association. Circulation. 2019;140(1):e9-e68. doi:10.1161/CIR.0000000000000682
Chow EJ, Aplenc R, Vrooman LM, et al. Late health outcomes after dexrazoxane treatment: a report from the Children's Oncology Group. Cancer. 2022;128(4):788-796. doi:10.1002/cncr.33974
Chow EJ, Aggarwal S, Doody DR, et al. Dexrazoxane and long-term heart function in survivors of childhood cancer. J Clin Oncol. 2023:JCO2202423. doi:10.1200/JCO.22.02423
EMA/424445/2017, EMEA/H/A-13/1453. Questions and answers on cardioxane (dexrazoxane,powder for solution for injection, 500 mg). Outcome of a procedure under Article 13 of Regulation (EC) No 1234/2008. European Medicines Agency, EU; 2017.
Choi HS, Park ES, Kang HJ, et al. Dexrazoxane for preventing anthracycline cardiotoxicity in children with solid tumors. J Korean Med Sci. 2010;25(9):1336-1342. doi:10.3346/jkms.2010.25.9.1336
Getz KD, Sung L, Alonzo TA, et al. Effect of dexrazoxane on left ventricular systolic function and treatment outcomes in patients with acute myeloid leukemia: a report from the Children's Oncology Group. J Clin Oncol. 2020;38(21):2398-2406. doi:10.1200/JCO.19.02856
Dewilde S, Carroll K, Nivelle E, Sawyer J. Evaluation of the cost-effectiveness of dexrazoxane for the prevention of anthracycline-related cardiotoxicity in children with sarcoma and haematologic malignancies: a European perspective. Cost Eff Resour Alloc. 2020;18:7. doi:10.1186/s12962-020-0205-4
Pouillart P. Evaluating the role of dexrazoxane as a cardioprotectant in cancer patients receiving anthracyclines. Cancer Treat Rev. 2004;30(7):643-650. doi:10.1016/j.ctrv.2004.06.002
Bansal N, Adams MJ, Ganatra S, et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 2019;5:18. doi:10.1186/s40959-019-0054-5
van Kalsbeek RJ, van der Pal HJH, Kremer LCM, et al. European PanCareFollowUp recommendations for surveillance of late effects of childhood, adolescent, and young adult cancer. Eur J Cancer. 2021;154:316-328. doi:10.1016/j.ejca.2021.06.004
Bhatia S, Armenian SH, Armstrong GT, et al. Collaborative research in childhood cancer survivorship: the current landscape. J Clin Oncol. 2015;33(27):3055-3064. doi:10.1200/JCO.2014.59.8052
Armenian SH, Hudson MM, Mulder RL, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123-e136. doi:10.1016/S1470-2045(14)70409-7
Leger K, Slone T, Lemler M, et al. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr Blood Cancer. 2015;62(1):123-127. doi:10.1002/pbc.25206
Kurauchi K, Nishikawa T, Miyahara E, Okamoto Y, Kawano Y. Role of metabolites of cyclophosphamide in cardiotoxicity. BMC Res Notes. 2017;10(1):406. doi:10.1186/s13104-017-2726-2
Iqubal A, Iqubal MK, Sharma S, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision. Life Sci. 2019;218:112-131. doi:10.1016/j.lfs.2018.12.018
Kusumoto S, Kawano H, Hayashi T, et al. Cyclophosphamide-induced cardiotoxicity with a prolonged clinical course diagnosed on an endomyocardial biopsy. Intern Med. 2013;52(20):2311-2315. doi:10.2169/internalmedicine.52.0347
Pokorna Z, Jirkovsky E, Hlavackova M, et al. In vitro and in vivo investigation of cardiotoxicity associated with anticancer proteasome inhibitors and their combination with anthracycline. Clin Sci (Lond). 2019;133(16):1827-1844. doi:10.1042/CS20190139
Hasinoff BB, Patel D, Wu X. Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovasc Toxicol. 2017;17(3):237-250. doi:10.1007/s12012-016-9378-7
Subedi A, Sharma LR, Shah BK. Bortezomib-induced acute congestive heart failure: a case report and review of literature. Ann Hematol. 2014;93(10):1797-1799. doi:10.1007/s00277-014-2026-z
Tochinai R, Ando M, Suzuki T, et al. Histopathological studies of microtubule disassembling agent-induced myocardial lesions in rats. Exp Toxicol Pathol. 2013;65(6):737-743. doi:10.1016/j.etp.2012.09.008
Madeddu C, Deidda M, Piras A, et al. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown). 2016;17:e12-e18. doi:10.2459/JCM.0000000000000376
Quezado ZM, Wilson WH, Cunnion RE, et al. High-dose ifosfamide is associated with severe, reversible cardiac dysfunction. Ann Intern Med. 1993;118(1):31-36. doi:10.7326/0003-4819-118-1-199301010-00006
Davies SM, Pearson AD, Craft AW. Toxicity of high-dose ifosfamide in children. Cancer Chemother Pharmacol. 1989;24:S8-S10. doi:10.1007/BF00253229
Alamolhodaei NS, Shirani K, Karimi G. Arsenic cardiotoxicity: an overview. Environ Toxicol Pharmacol. 2015;40(3):1005-1014. doi:10.1016/j.etap.2015.08.030
Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309(9):H1453-H1467. doi:10.1152/ajpheart.00554.2015
Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755-1764. doi:10.1016/j.jacc.2018.02.037
Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018;19(9):e447-e458. doi:10.1016/S1470-2045(18)30457-1
Varricchi G, Galdiero MR, Marone G, et al. Cardiotoxicity of immune checkpoint inhibitors. ESMO Open. 2017;2(4):e000247. doi:10.1136/esmoopen-2017-000247
Simbre VC, Duffy SA, Dadlani GH, Miller TL, Lipshultz SE. Cardiotoxicity of cancer chemotherapy: implications for children. Paediatr Drugs. 2005;7(3):187-202. doi:10.2165/00148581-200507030-00005
Zhan H, Aizawa K, Sun J, et al. Ataxia telangiectasia mutated in cardiac fibroblasts regulates doxorubicin-induced cardiotoxicity. Cardiovasc Res. 2016;110(1):85-95. doi:10.1093/cvr/cvw032
Pastorczak A, Szczepanski T, Mlynarski W, International Berlin-Frankfurt-Munster (I-BFM) ALL host genetic variation working group. Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. Eur J Med Genet. 2016;59(3):126-132. doi:10.1016/j.ejmg.2016.01.007
Gibson TM, Li Z, Green DM, et al. Blood pressure status in adult survivors of childhood cancer: a report from the St. Jude Lifetime Cohort Study. Cancer Epidemiol Biomarkers Prev. 2017;26(12):1705-1713. doi:10.1158/1055-9965.EPI-17-0510