Plasma proteomic signatures of a direct measure of insulin sensitivity in two population cohorts.
Euglycaemic–hyperinsulinaemic clamp
Insulin resistance
Insulin sensitivity
LASSO
Plasma proteomics
Population study
Stability selection
Journal
Diabetologia
ISSN: 1432-0428
Titre abrégé: Diabetologia
Pays: Germany
ID NLM: 0006777
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
20
06
2022
accepted:
12
04
2023
medline:
1
8
2023
pubmed:
17
6
2023
entrez:
17
6
2023
Statut:
ppublish
Résumé
The euglycaemic-hyperinsulinaemic clamp (EIC) is the reference standard for the measurement of whole-body insulin sensitivity but is laborious and expensive to perform. We aimed to assess the incremental value of high-throughput plasma proteomic profiling in developing signatures correlating with the M value derived from the EIC. We measured 828 proteins in the fasting plasma of 966 participants from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study and 745 participants from the Uppsala Longitudinal Study of Adult Men (ULSAM) using a high-throughput proximity extension assay. We used the least absolute shrinkage and selection operator (LASSO) approach using clinical variables and protein measures as features. Models were tested within and across cohorts. Our primary model performance metric was the proportion of the M value variance explained (R A standard LASSO model incorporating 53 proteins in addition to routinely available clinical variables increased the M value R A plasma proteomic signature identified using a standard LASSO approach improves the cross-sectional estimation of the M value over routine clinical variables. However, a small subset of these proteins identified using a stability selection algorithm affords much of this improvement, especially when considering cross-cohort analyses. Our approach provides opportunities to improve the identification of insulin-resistant individuals at risk of insulin resistance-related adverse health consequences.
Identifiants
pubmed: 37329449
doi: 10.1007/s00125-023-05946-z
pii: 10.1007/s00125-023-05946-z
pmc: PMC10390625
doi:
Substances chimiques
Insulin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1643-1654Subventions
Organisme : NIH HHS
ID : 1R01DK114183
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK116750
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK120565
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK106236
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK107437
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK116074
Pays : United States
Investigateurs
Ele Ferrannini
(E)
Michaela Kozakova
(M)
Amalia Gastaldelli
(A)
Simon Coppack
(S)
Beverley Balkau
(B)
Jacqueline Dekker
(J)
Mark Walker
(M)
Andrea Mari
(A)
Andrea Tura
(A)
Martine Laville
(M)
Henning Beck
(H)
John Nolan
(J)
Geremia Bolli
(G)
Alain Golay
(A)
Thomas Konrad
(T)
Peter Nilsson
(P)
Olle Melander
(O)
Geltrude Mingrone
(G)
Colin Perry
(C)
John Petrie
(J)
Michael Krebs
(M)
Rafael Gabriel
(R)
Asimina Mitrakou
(A)
Piermarco Piatti
(P)
Nebojsa Lalic
(N)
Marku Laakso
(M)
Informations de copyright
© 2023. The Author(s).
Références
Einhorn D, Reaven GM, Cobin RH et al (2003) American college of endocrinology position statement on the insulin resistance syndrome. Endocr Pract 9(3):237–252
pubmed: 12924350
DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237(3):E214-223. https://doi.org/10.1152/ajpendo.1979.237.3.E214
doi: 10.1152/ajpendo.1979.237.3.E214
pubmed: 382871
Pacini G, Mari A (2003) Methods for clinical assessment of insulin sensitivity and beta-cell function. Best Pract Res Clin Endocrinol Metab 17(3):305–322. https://doi.org/10.1016/s1521-690x(03)00042-3
doi: 10.1016/s1521-690x(03)00042-3
pubmed: 12962688
Zethelius B, Hales CN, Lithell HO, Berne C (2004) Insulin resistance, impaired early insulin response, and insulin propeptides as predictors of the development of type 2 diabetes: a population-based, 7-year follow-up study in 70-year-old men. Diabetes Care 27(6):1433–1438. https://doi.org/10.2337/diacare.27.6.1433
doi: 10.2337/diacare.27.6.1433
pubmed: 15161800
Zethelius B, Lithell H, Hales CN, Berne C (2005) Insulin sensitivity, proinsulin and insulin as predictors of coronary heart disease. A population-based 10-year, follow-up study in 70-year old men using the euglycaemic insulin clamp. Diabetologia 48(5):862–867. https://doi.org/10.1007/s00125-005-1711-9
doi: 10.1007/s00125-005-1711-9
pubmed: 15803331
Wiberg B, Sundstrom J, Zethelius B, Lind L (2009) Insulin sensitivity measured by the euglycaemic insulin clamp and proinsulin levels as predictors of stroke in elderly men. Diabetologia 52(1):90–96. https://doi.org/10.1007/s00125-008-1171-0
doi: 10.1007/s00125-008-1171-0
pubmed: 18949454
Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L (2005) Insulin resistance and risk of congestive heart failure. JAMA 294(3):334–341. https://doi.org/10.1001/jama.294.3.334
doi: 10.1001/jama.294.3.334
pubmed: 16030278
Otten J, Ahren B, Olsson T (2014) Surrogate measures of insulin sensitivity vs the hyperinsulinaemic-euglycaemic clamp: a meta-analysis. Diabetologia 57(9):1781–1788. https://doi.org/10.1007/s00125-014-3285-x
doi: 10.1007/s00125-014-3285-x
pubmed: 24891021
Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20(2):12. https://doi.org/10.1007/s11906-018-0812-z
doi: 10.1007/s11906-018-0812-z
pubmed: 29480368
pmcid: 5866840
Zhou Z, Macpherson J, Gray SR et al (2021) Are people with metabolically healthy obesity really healthy? A prospective cohort study of 381,363 UK Biobank participants. Diabetologia 64(9):1963–1972. https://doi.org/10.1007/s00125-021-05484-6
doi: 10.1007/s00125-021-05484-6
pubmed: 34109441
pmcid: 8382657
Staten MA, Stern MP, Miller WG, Steffes MW, Campbell SE, Insulin Standardization W (2010) Insulin assay standardization: leading to measures of insulin sensitivity and secretion for practical clinical care. Diabetes Care 33(1):205–206. https://doi.org/10.2337/dc09-1206
doi: 10.2337/dc09-1206
pubmed: 20040676
pmcid: 2797975
Kim SH, Abbasi F, Reaven GM (2004) Impact of degree of obesity on surrogate estimates of insulin resistance. Diabetes Care 27(8):1998–2002. https://doi.org/10.2337/diacare.27.8.1998
doi: 10.2337/diacare.27.8.1998
pubmed: 15277430
Zanini JC, Pietzner M, Langenberg C (2020) Integrating genetics and the plasma proteome to predict the risk of type 2 diabetes. Curr Diab Rep 20(11):60. https://doi.org/10.1007/s11892-020-01340-w
doi: 10.1007/s11892-020-01340-w
pubmed: 33033935
pmcid: 7543966
Hills SA, Balkau B, Coppack SW et al (2004) The EGIR-RISC STUDY (The European group for the study of insulin resistance: relationship between insulin sensitivity and cardiovascular disease risk): I. Methodology and objectives. Diabetologia 47(3):566–570. https://doi.org/10.1007/s00125-004-1335-5
doi: 10.1007/s00125-004-1335-5
pubmed: 14968294
Hedstrand H (1975) A study of middle-aged men with particular reference to risk factors for cardiovascular disease. Ups J Med Sci Suppl 19:1–61
pubmed: 1216390
Assarsson E, Lundberg M, Holmquist G et al (2014) Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PloS one 9(4):e95192. https://doi.org/10.1371/journal.pone.0095192
doi: 10.1371/journal.pone.0095192
pubmed: 24755770
pmcid: 3995906
Hastie T, Tibshirani R, Wainwright M (2015) Statistical learning with sparsity. Chapman and Hall/CRC, New York. https://doi.org/10.1201/b18401
Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP (2005) Identification of individuals with insulin resistance using routine clinical measurements. Diabetes 54(2):333–339. https://doi.org/10.2337/diabetes.54.2.333
doi: 10.2337/diabetes.54.2.333
pubmed: 15677489
Salazar MR, Carbajal HA, Espeche WG et al (2017) Use of the triglyceride/high-density lipoprotein cholesterol ratio to identify cardiometabolic risk: impact of obesity? J Investig Med 65(2):323–327. https://doi.org/10.1136/jim-2016-000248
doi: 10.1136/jim-2016-000248
pubmed: 27638846
Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc Series B Stat Methodol 72(4):417–473. https://doi.org/10.1111/j.1467-9868.2010.00740.x
doi: 10.1111/j.1467-9868.2010.00740.x
Hofner B, Boccuto L, Goker M (2015) Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinformatics 16:144. https://doi.org/10.1186/s12859-015-0575-3
doi: 10.1186/s12859-015-0575-3
pubmed: 25943565
pmcid: 4464883
Shah RD, Samworth RJ (2013) Variable selection with error control: another look at stability selection. J R Stat Soc Series B Stat Methodol 75(1):55–80. https://doi.org/10.1111/j.1467-9868.2011.01034.x
doi: 10.1111/j.1467-9868.2011.01034.x
de Rooij SR, Dekker JM, Kozakova M et al (2009) Fasting insulin has a stronger association with an adverse cardiometabolic risk profile than insulin resistance: the RISC study. Eur J Endocrinol 161(2):223–230. https://doi.org/10.1530/EJE-09-0058
doi: 10.1530/EJE-09-0058
pubmed: 19439511
Vessby B, Tengblad S, Lithell H (1994) Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia 37(10):1044–1050. https://doi.org/10.1007/BF00400468
doi: 10.1007/BF00400468
pubmed: 7851683
Pepe MS, Kerr KF, Longton G, Wang Z (2013) Testing for improvement in prediction model performance. Stat Med 32(9):1467–1482. https://doi.org/10.1002/sim.5727
doi: 10.1002/sim.5727
pubmed: 23296397
pmcid: 3625503
Arafat AM, Weickert MO, Frystyk J et al (2009) The role of insulin-like growth factor (IGF) binding protein-2 in the insulin-mediated decrease in IGF-I bioactivity. J Clin Endocrinol Metab 94(12):5093–5101. https://doi.org/10.1210/jc.2009-0875
doi: 10.1210/jc.2009-0875
pubmed: 19846739
Wheatcroft SB, Kearney MT, Shah AM et al (2007) IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 56(2):285–294. https://doi.org/10.2337/db06-0436
doi: 10.2337/db06-0436
pubmed: 17259371
Heald AH, Kaushal K, Siddals KW, Rudenski AS, Anderson SG, Gibson JM (2006) Insulin-like growth factor binding protein-2 (IGFBP-2) is a marker for the metabolic syndrome. Exp Clin Endocrinol Diabetes 114(7):371–376. https://doi.org/10.1055/s-2006-924320
doi: 10.1055/s-2006-924320
pubmed: 16915540
Hedbacker K, Birsoy K, Wysocki RW et al (2010) Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab 11(1):11–22. https://doi.org/10.1016/j.cmet.2009.11.007
doi: 10.1016/j.cmet.2009.11.007
pubmed: 20074524
Yadav A, Kataria MA, Saini V, Yadav A (2013) Role of leptin and adiponectin in insulin resistance. Clin Chim Acta Int J Clin Chem 417:80–84. https://doi.org/10.1016/j.cca.2012.12.007
doi: 10.1016/j.cca.2012.12.007
Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297(2):E271-288. https://doi.org/10.1152/ajpendo.90920.2008
doi: 10.1152/ajpendo.90920.2008
pubmed: 19318514
Kim JK, Fillmore JJ, Chen Y et al (2001) Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 98(13):7522–7527. https://doi.org/10.1073/pnas.121164498
doi: 10.1073/pnas.121164498
pubmed: 11390966
pmcid: 34701
Zhang S, Guo F, Yu M et al (2020) Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity. J Hepatol 73(6):1482–1495. https://doi.org/10.1016/j.jhep.2020.07.034
doi: 10.1016/j.jhep.2020.07.034
pubmed: 32738448
Singh AK, Lin HH (2021) The role of GPR56/ADGRG1 in health and disease. Biomed J 44(5):534–547. https://doi.org/10.1016/j.bj.2021.04.012
doi: 10.1016/j.bj.2021.04.012
pubmed: 34654683
pmcid: 8640549
UniProt C (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489. https://doi.org/10.1093/nar/gkaa1100
doi: 10.1093/nar/gkaa1100
Namwanje M, Brown CW (2016) Activins and inhibins: roles in development, physiology, and disease. Cold Spring Harb Perspect Biol 8(7):a021881. https://doi.org/10.1101/cshperspect.a021881
doi: 10.1101/cshperspect.a021881
pubmed: 27328872
pmcid: 4930927
Fagerberg L, Hallström BM, Oksvold P et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13(2):397–406. https://doi.org/10.1074/mcp.M113.035600
doi: 10.1074/mcp.M113.035600
pubmed: 24309898
Kimura S, Yokoyama S, Pilon AL, Kurotani R (2022) Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacol Ther 236:108112. https://doi.org/10.1016/j.pharmthera.2022.108112
doi: 10.1016/j.pharmthera.2022.108112
pubmed: 35016921
Cheuk IW, Siu MT, Ho JC, Chen J, Shin VY, Kwong A (2020) ITGAV targeting as a therapeutic approach for treatment of metastatic breast cancer. Am J Cancer Res 10(1):211–223
pubmed: 32064162
pmcid: 7017729
Haslam DE, Li J, Dillon ST et al (2022) Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics 22(13–14):e2100170. https://doi.org/10.1002/pmic.202100170
doi: 10.1002/pmic.202100170
pubmed: 35598103
pmcid: 9923770
Deutsch EW, Omenn GS, Sun Z et al (2021) Advances and utility of the human plasma proteome. J Proteome Res 20(12):5241–5263. https://doi.org/10.1021/acs.jproteome.1c00657
doi: 10.1021/acs.jproteome.1c00657
pubmed: 34672606
pmcid: 9469506
Sun BB, Chiou J, Traylor M et al (2022) Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. bioRxiv: 2022.2006.2017.496443. https://doi.org/10.1101/2022.06.17.496443