Zoonotic sources and the spread of antimicrobial resistance from the perspective of low and middle-income countries.


Journal

Infectious diseases of poverty
ISSN: 2049-9957
Titre abrégé: Infect Dis Poverty
Pays: England
ID NLM: 101606645

Informations de publication

Date de publication:
14 Jun 2023
Historique:
received: 21 02 2023
accepted: 06 06 2023
medline: 16 6 2023
pubmed: 15 6 2023
entrez: 14 6 2023
Statut: epublish

Résumé

Antimicrobial resistance is an increasing challenge in low and middle-income countries as it is widespread in these countries and is linked to an increased mortality. Apart from human and environmental factors, animal-related drivers of antimicrobial resistance in low- and middle-income countries have special features that differ from high-income countries. The aim of this narrative review is to address the zoonotic sources and the spread of antimicrobial resistance from the perspective of low- and middle-income countries. Contamination with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is highest in poultry (Africa: 8.9-60%, Asia: 53-93%) and there is a risk to import ESBL-producing E. coli through poultry meat in Africa. In aquacultures, the proportion of ESBL-producers among E. coli can be high (27%) but the overall low quality of published studies limit the general conclusion on the impact of aquacultures on human health. ESBL-producing E. coli colonization of wildlife is 1-9% in bats or 2.5-63% birds. Since most of them are migratory animals, they can disperse antimicrobial resistant bacteria over large distances. So-called 'filth flies' are a relevant vector not only of enteric pathogens but also of antimicrobial resistant bacteria in settings where sanitary systems are poor. In Africa, up to 72.5% of 'filth flies' are colonized with ESBL-producing E. coli, mostly conferred by CTX-M (24.4-100%). While methicillin-resistant Staphylococcus aureus plays a minor role in livestock in Africa, it is frequently found in South America in poultry (27%) or pork (37.5-56.5%) but less common in Asia (poultry: 3%, pork: 1-16%). Interventions to contain the spread of AMR should be tailored to the needs of low- and middle-income countries. These comprise capacity building of diagnostic facilities, surveillance, infection prevention and control in small-scale farming.

Sections du résumé

BACKGROUND BACKGROUND
Antimicrobial resistance is an increasing challenge in low and middle-income countries as it is widespread in these countries and is linked to an increased mortality. Apart from human and environmental factors, animal-related drivers of antimicrobial resistance in low- and middle-income countries have special features that differ from high-income countries. The aim of this narrative review is to address the zoonotic sources and the spread of antimicrobial resistance from the perspective of low- and middle-income countries.
MAIN BODY METHODS
Contamination with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is highest in poultry (Africa: 8.9-60%, Asia: 53-93%) and there is a risk to import ESBL-producing E. coli through poultry meat in Africa. In aquacultures, the proportion of ESBL-producers among E. coli can be high (27%) but the overall low quality of published studies limit the general conclusion on the impact of aquacultures on human health. ESBL-producing E. coli colonization of wildlife is 1-9% in bats or 2.5-63% birds. Since most of them are migratory animals, they can disperse antimicrobial resistant bacteria over large distances. So-called 'filth flies' are a relevant vector not only of enteric pathogens but also of antimicrobial resistant bacteria in settings where sanitary systems are poor. In Africa, up to 72.5% of 'filth flies' are colonized with ESBL-producing E. coli, mostly conferred by CTX-M (24.4-100%). While methicillin-resistant Staphylococcus aureus plays a minor role in livestock in Africa, it is frequently found in South America in poultry (27%) or pork (37.5-56.5%) but less common in Asia (poultry: 3%, pork: 1-16%).
CONCLUSIONS CONCLUSIONS
Interventions to contain the spread of AMR should be tailored to the needs of low- and middle-income countries. These comprise capacity building of diagnostic facilities, surveillance, infection prevention and control in small-scale farming.

Identifiants

pubmed: 37316938
doi: 10.1186/s40249-023-01113-z
pii: 10.1186/s40249-023-01113-z
pmc: PMC10265791
doi:

Substances chimiques

Anti-Bacterial Agents 0

Types de publication

Review Letter

Langues

eng

Sous-ensembles de citation

IM

Pagination

59

Informations de copyright

© 2023. The Author(s).

Références

One Health. 2022 Jun 28;15:100412
pubmed: 36277092
J Water Health. 2021 Oct;19(5):705-723
pubmed: 34665765
Biomed Res Int. 2016;2016:8182096
pubmed: 26989692
J Glob Antimicrob Resist. 2017 Mar;8:35-40
pubmed: 27984780
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13257-63
pubmed: 25136111
Nature. 2008 Feb 21;451(7181):990-3
pubmed: 18288193
PLoS One. 2012;7(12):e53039
pubmed: 23300857
Clin Microbiol Rev. 2019 Jun 12;32(3):
pubmed: 31189557
Arch Microbiol. 2021 May;203(4):1321-1334
pubmed: 33386421
J Travel Med. 2020 Feb 3;27(1):
pubmed: 31691808
PLoS One. 2013 Oct 21;8(10):e78046
pubmed: 24205084
Sci Total Environ. 2022 Mar 1;810:152045
pubmed: 34883172
Microb Drug Resist. 2016 Jun;22(4):336-41
pubmed: 26683492
Environ Sci Pollut Res Int. 2022 Oct;29(46):69241-69274
pubmed: 35969340
Germs. 2017 Sep 1;7(3):132-139
pubmed: 28932713
J Antimicrob Chemother. 2007 Nov;60(5):1137-41
pubmed: 17855726
Sci Total Environ. 2022 Feb 1;806(Pt 2):150539
pubmed: 34852430
J Food Sci. 2015 Jan;80(1):M147-50
pubmed: 25472504
Int J Environ Res Public Health. 2016 Dec 28;14(1):
pubmed: 28036049
Dtsch Arztebl Int. 2021 Sep 6;118(35-36):579-589
pubmed: 34789368
Comp Immunol Microbiol Infect Dis. 2021 Apr;75:101613
pubmed: 33465673
Antibiotics (Basel). 2021 Sep 14;10(9):
pubmed: 34572690
Southeast Asian J Trop Med Public Health. 2013 Nov;44(6):988-96
pubmed: 24450236
Lancet. 2022 Feb 12;399(10325):629-655
pubmed: 35065702
Science. 2017 Sep 29;357(6358):1350-1352
pubmed: 28963240
Microb Drug Resist. 2019 Mar;25(2):167-172
pubmed: 30234422
BMC Microbiol. 2020 Aug 14;20(1):253
pubmed: 32795260
Clin Microbiol Infect. 2013 Nov;19(11):1072-7
pubmed: 23398468
FEMS Microbiol Lett. 2018 Aug 1;365(16):
pubmed: 30010911
Lancet Infect Dis. 2011 May;11(5):355-62
pubmed: 21478057
Int J Food Microbiol. 2014 Feb 3;171:8-14
pubmed: 24296257
Arch Microbiol. 2022 Jan 15;204(2):137
pubmed: 35032196
Nat Microbiol. 2019 Sep;4(9):1432-1442
pubmed: 31439928
Vet Microbiol. 2014 Jul 16;171(3-4):422-31
pubmed: 24636162
Microb Drug Resist. 2016 Dec;22(8):682-687
pubmed: 27007258
Clin Microbiol Infect. 2019 Oct;25(10):1287.e1-1287.e7
pubmed: 30898722
FEMS Microbiol Ecol. 2018 May 1;94(5):
pubmed: 29668933
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3463-E3470
pubmed: 29581252
Int J Infect Dis. 2016 Nov;52:59-61
pubmed: 27717858
Mol Ecol. 2020 May;29(10):1919-1935
pubmed: 32335957
Front Microbiol. 2018 Feb 13;9:162
pubmed: 29487577
Microb Drug Resist. 2021 Apr;27(4):553-561
pubmed: 32816627
Foodborne Pathog Dis. 2018 Feb;15(2):86-93
pubmed: 29068720
BMC Microbiol. 2019 Jul 30;19(1):174
pubmed: 31362706
J Antimicrob Chemother. 2010 Dec;65(12):2534-7
pubmed: 20889530
Nature. 2022 Feb;602(7895):135-141
pubmed: 34987223
Sci Total Environ. 2019 Jul 15;674:554-562
pubmed: 31022545
J Microbiol Immunol Infect. 2012 Dec;45(6):398-403
pubmed: 23031536
J Food Prot. 2016 Jan;79(1):82-9
pubmed: 26735033
BMC Infect Dis. 2019 Oct 28;19(1):897
pubmed: 31660887
Braz J Microbiol. 2022 Mar;53(1):401-410
pubmed: 34761356
Microb Drug Resist. 2021 Aug;27(8):1071-1078
pubmed: 33417827
PLOS Glob Public Health. 2023 Feb 1;3(2):e0001305
pubmed: 36963007
Emerg Infect Dis. 2019 Jan;25(1):
pubmed: 30561323
Sci Rep. 2022 Jun 7;12(1):9354
pubmed: 35672430
Front Vet Sci. 2020 Nov 25;7:547843
pubmed: 33324692
Foodborne Pathog Dis. 2018 May;15(5):262-268
pubmed: 29364698
J Food Prot. 2009 May;72(5):1082-8
pubmed: 19517738
Travel Med Infect Dis. 2018 Mar - Apr;22:8-17
pubmed: 29482014
Environ Sci Policy. 2021 Oct;124:1-11
pubmed: 36536884
BMC Microbiol. 2014 Nov 19;14:286
pubmed: 25406798
Clin Infect Dis. 2015 Feb 1;60(3):439-52
pubmed: 25301206
Foodborne Pathog Dis. 2015 Aug;12(8):686-92
pubmed: 26086916
Int J Environ Res Public Health. 2022 Dec 23;20(1):
pubmed: 36612565
Int J Microbiol. 2016;2016:5275724
pubmed: 27190518
J Wildl Dis. 2022 Apr 1;58(2):269-278
pubmed: 35255126
J Glob Antimicrob Resist. 2019 Mar;16:152-158
pubmed: 30312831
Lancet Planet Health. 2017 Nov;1(8):e316-e327
pubmed: 29387833
Vet Microbiol. 2018 Apr;217:7-12
pubmed: 29615260
Zool Res. 2017 Mar 18;38(2):55-80
pubmed: 28409502
J Vet Sci. 2014 Dec;15(4):529-36
pubmed: 25530702
PLoS One. 2022 Jan 14;17(1):e0262308
pubmed: 35030183
Sci Rep. 2020 Oct 12;10(1):16990
pubmed: 33046808
PLoS One. 2015 Oct 13;10(10):e0139706
pubmed: 26461270
Ann Trop Med Parasitol. 2005 Dec;99(8):795-802
pubmed: 16297293
Sci Rep. 2020 Dec 14;10(1):21878
pubmed: 33318576
Int J Antimicrob Agents. 2021 Jul;58(1):106364
pubmed: 34044108
Int J Food Microbiol. 2020 May 2;320:108510
pubmed: 31986349
Acta Vet Scand. 2009 Jan 07;51:1
pubmed: 19128459
Ambio. 2022 Sep;51(9):1963-1977
pubmed: 35303258
J Med Microbiol. 2015 Sep;64(9):1087-1093
pubmed: 26296763
Microb Drug Resist. 2015 Feb;21(1):111-6
pubmed: 25313843
Int J Environ Res Public Health. 2019 Oct 05;16(19):
pubmed: 31590350
Lett Appl Microbiol. 2022 Dec;75(6):1549-1558
pubmed: 36038146
Microbiol Immunol. 2016 Sep;60(9):575-85
pubmed: 27474453
Antimicrob Resist Infect Control. 2020 Nov 4;9(1):175
pubmed: 33148323
Vet Res Commun. 2021 Sep;45(2-3):163-170
pubmed: 34041662
J Wildl Dis. 2022 Apr 1;58(2):380-383
pubmed: 35276733
Lancet. 2016 Jan 9;387(10014):176-87
pubmed: 26603922
Crit Rev Microbiol. 2019 Mar;45(2):131-161
pubmed: 31122100
Expert Rev Vaccines. 2005 Feb;4(1):89-101
pubmed: 15757476
Microbiology (Reading). 2022 Oct;168(10):
pubmed: 36287593
BMC Vet Res. 2020 Aug 24;16(1):302
pubmed: 32838793
Sci Total Environ. 2021 Dec 1;798:149205
pubmed: 34375247
Appl Environ Microbiol. 2015 Feb;81(3):812-20
pubmed: 25398864
Infect Drug Resist. 2022 Sep 30;15:5759-5779
pubmed: 36204394
Dis Aquat Organ. 2020 Apr 30;139:87-92
pubmed: 32351239
Microorganisms. 2020 Jan 19;8(1):
pubmed: 31963801
Vet J. 2019 Feb;244:75-82
pubmed: 30825899
Am J Primatol. 2012 Dec;74(12):1071-5
pubmed: 22907634
Nat Commun. 2021 Sep 10;12(1):5384
pubmed: 34508079
J Food Prot. 2018 Jul;81(7):1055-1062
pubmed: 29877733
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5649-54
pubmed: 25792457
Front Microbiol. 2012 Mar 22;3:103
pubmed: 22461782
Int J Med Microbiol. 2013 Aug;303(6-7):331-7
pubmed: 23607972
Front Vet Sci. 2021 Mar 11;8:595152
pubmed: 33778031
PLoS One. 2014 Dec 04;9(12):e113548
pubmed: 25474243
Front Microbiol. 2021 Jun 22;12:628738
pubmed: 34239503
Foodborne Pathog Dis. 2009 Nov;6(9):1067-73
pubmed: 19642918
J Appl Microbiol. 2022 Sep;133(3):1169-1182
pubmed: 35094463
Folia Microbiol (Praha). 2022 Feb;67(1):109-119
pubmed: 34569031
J Infect Dev Ctries. 2020 May 31;14(5):471-478
pubmed: 32525833
BMC Public Health. 2016 Aug 02;16:699
pubmed: 27484086
Lancet Infect Dis. 2013 Jan;13(1):43-54
pubmed: 23103172
Clin Infect Dis. 2018 Mar 5;66(6):963-969
pubmed: 29346620
Int J Antimicrob Agents. 2018 Aug;52(2):135-143
pubmed: 29567094
Microb Drug Resist. 2021 May;27(5):698-705
pubmed: 33085574
Front Microbiol. 2019 Jan 15;9:3358
pubmed: 30697208
Int J Food Microbiol. 2010 Feb 28;137(2-3):281-6
pubmed: 20031243
JAMA Netw Open. 2018 Aug 3;1(4):e181662
pubmed: 30646106
Environ Microbiol Rep. 2012 Feb;4(1):141-6
pubmed: 23757241
Microb Drug Resist. 2014 Oct;20(5):466-71
pubmed: 24786256
Campbell Syst Rev. 2021 Jul 24;17(3):e1188
pubmed: 37016663
Front Microbiol. 2018 Nov 30;9:2928
pubmed: 30555448
Appl Environ Microbiol. 2016 Sep 16;82(19):5910-7
pubmed: 27474712
Vet Microbiol. 2016 Oct 15;194:62-68
pubmed: 27157499
Lancet Infect Dis. 2016 Feb;16(2):161-8
pubmed: 26603172
PLoS One. 2012;7(9):e45729
pubmed: 23029206
Int J Food Microbiol. 2021 May 16;346:109164
pubmed: 33813365
PLoS One. 2014 Feb 28;9(2):e89055
pubmed: 24586500
J Antimicrob Chemother. 2017 May 1;72(5):1310-1313
pubmed: 28158613
Foodborne Pathog Dis. 2022 Mar;19(3):232-240
pubmed: 34941425
Microorganisms. 2016 Feb 04;4(1):
pubmed: 27681906
PLoS One. 2015 Aug 18;10(8):e0136052
pubmed: 26284654

Auteurs

Ioana D Olaru (ID)

Institute of Medical Microbiology, University of Münster, Münster, Germany. ioanadiana.Olaru@ukmuenster.de.

Birgit Walther (B)

Advanced Light and Electron Microscopy, Robert Koch-Institute, Berlin, Germany.
Department of Environmental Hygiene, German Environment Agency, Berlin, Germany.

Frieder Schaumburg (F)

Institute of Medical Microbiology, University of Münster, Münster, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH