Zoonotic sources and the spread of antimicrobial resistance from the perspective of low and middle-income countries.
Antimicrobial resistance
Extended-spectrum Beta-lactamase
Methicillin-resistant Staphylococcus aureus
Journal
Infectious diseases of poverty
ISSN: 2049-9957
Titre abrégé: Infect Dis Poverty
Pays: England
ID NLM: 101606645
Informations de publication
Date de publication:
14 Jun 2023
14 Jun 2023
Historique:
received:
21
02
2023
accepted:
06
06
2023
medline:
16
6
2023
pubmed:
15
6
2023
entrez:
14
6
2023
Statut:
epublish
Résumé
Antimicrobial resistance is an increasing challenge in low and middle-income countries as it is widespread in these countries and is linked to an increased mortality. Apart from human and environmental factors, animal-related drivers of antimicrobial resistance in low- and middle-income countries have special features that differ from high-income countries. The aim of this narrative review is to address the zoonotic sources and the spread of antimicrobial resistance from the perspective of low- and middle-income countries. Contamination with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is highest in poultry (Africa: 8.9-60%, Asia: 53-93%) and there is a risk to import ESBL-producing E. coli through poultry meat in Africa. In aquacultures, the proportion of ESBL-producers among E. coli can be high (27%) but the overall low quality of published studies limit the general conclusion on the impact of aquacultures on human health. ESBL-producing E. coli colonization of wildlife is 1-9% in bats or 2.5-63% birds. Since most of them are migratory animals, they can disperse antimicrobial resistant bacteria over large distances. So-called 'filth flies' are a relevant vector not only of enteric pathogens but also of antimicrobial resistant bacteria in settings where sanitary systems are poor. In Africa, up to 72.5% of 'filth flies' are colonized with ESBL-producing E. coli, mostly conferred by CTX-M (24.4-100%). While methicillin-resistant Staphylococcus aureus plays a minor role in livestock in Africa, it is frequently found in South America in poultry (27%) or pork (37.5-56.5%) but less common in Asia (poultry: 3%, pork: 1-16%). Interventions to contain the spread of AMR should be tailored to the needs of low- and middle-income countries. These comprise capacity building of diagnostic facilities, surveillance, infection prevention and control in small-scale farming.
Sections du résumé
BACKGROUND
BACKGROUND
Antimicrobial resistance is an increasing challenge in low and middle-income countries as it is widespread in these countries and is linked to an increased mortality. Apart from human and environmental factors, animal-related drivers of antimicrobial resistance in low- and middle-income countries have special features that differ from high-income countries. The aim of this narrative review is to address the zoonotic sources and the spread of antimicrobial resistance from the perspective of low- and middle-income countries.
MAIN BODY
METHODS
Contamination with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is highest in poultry (Africa: 8.9-60%, Asia: 53-93%) and there is a risk to import ESBL-producing E. coli through poultry meat in Africa. In aquacultures, the proportion of ESBL-producers among E. coli can be high (27%) but the overall low quality of published studies limit the general conclusion on the impact of aquacultures on human health. ESBL-producing E. coli colonization of wildlife is 1-9% in bats or 2.5-63% birds. Since most of them are migratory animals, they can disperse antimicrobial resistant bacteria over large distances. So-called 'filth flies' are a relevant vector not only of enteric pathogens but also of antimicrobial resistant bacteria in settings where sanitary systems are poor. In Africa, up to 72.5% of 'filth flies' are colonized with ESBL-producing E. coli, mostly conferred by CTX-M (24.4-100%). While methicillin-resistant Staphylococcus aureus plays a minor role in livestock in Africa, it is frequently found in South America in poultry (27%) or pork (37.5-56.5%) but less common in Asia (poultry: 3%, pork: 1-16%).
CONCLUSIONS
CONCLUSIONS
Interventions to contain the spread of AMR should be tailored to the needs of low- and middle-income countries. These comprise capacity building of diagnostic facilities, surveillance, infection prevention and control in small-scale farming.
Identifiants
pubmed: 37316938
doi: 10.1186/s40249-023-01113-z
pii: 10.1186/s40249-023-01113-z
pmc: PMC10265791
doi:
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Review
Letter
Langues
eng
Sous-ensembles de citation
IM
Pagination
59Informations de copyright
© 2023. The Author(s).
Références
One Health. 2022 Jun 28;15:100412
pubmed: 36277092
J Water Health. 2021 Oct;19(5):705-723
pubmed: 34665765
Biomed Res Int. 2016;2016:8182096
pubmed: 26989692
J Glob Antimicrob Resist. 2017 Mar;8:35-40
pubmed: 27984780
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13257-63
pubmed: 25136111
Nature. 2008 Feb 21;451(7181):990-3
pubmed: 18288193
PLoS One. 2012;7(12):e53039
pubmed: 23300857
Clin Microbiol Rev. 2019 Jun 12;32(3):
pubmed: 31189557
Arch Microbiol. 2021 May;203(4):1321-1334
pubmed: 33386421
J Travel Med. 2020 Feb 3;27(1):
pubmed: 31691808
PLoS One. 2013 Oct 21;8(10):e78046
pubmed: 24205084
Sci Total Environ. 2022 Mar 1;810:152045
pubmed: 34883172
Microb Drug Resist. 2016 Jun;22(4):336-41
pubmed: 26683492
Environ Sci Pollut Res Int. 2022 Oct;29(46):69241-69274
pubmed: 35969340
Germs. 2017 Sep 1;7(3):132-139
pubmed: 28932713
J Antimicrob Chemother. 2007 Nov;60(5):1137-41
pubmed: 17855726
Sci Total Environ. 2022 Feb 1;806(Pt 2):150539
pubmed: 34852430
J Food Sci. 2015 Jan;80(1):M147-50
pubmed: 25472504
Int J Environ Res Public Health. 2016 Dec 28;14(1):
pubmed: 28036049
Dtsch Arztebl Int. 2021 Sep 6;118(35-36):579-589
pubmed: 34789368
Comp Immunol Microbiol Infect Dis. 2021 Apr;75:101613
pubmed: 33465673
Antibiotics (Basel). 2021 Sep 14;10(9):
pubmed: 34572690
Southeast Asian J Trop Med Public Health. 2013 Nov;44(6):988-96
pubmed: 24450236
Lancet. 2022 Feb 12;399(10325):629-655
pubmed: 35065702
Science. 2017 Sep 29;357(6358):1350-1352
pubmed: 28963240
Microb Drug Resist. 2019 Mar;25(2):167-172
pubmed: 30234422
BMC Microbiol. 2020 Aug 14;20(1):253
pubmed: 32795260
Clin Microbiol Infect. 2013 Nov;19(11):1072-7
pubmed: 23398468
FEMS Microbiol Lett. 2018 Aug 1;365(16):
pubmed: 30010911
Lancet Infect Dis. 2011 May;11(5):355-62
pubmed: 21478057
Int J Food Microbiol. 2014 Feb 3;171:8-14
pubmed: 24296257
Arch Microbiol. 2022 Jan 15;204(2):137
pubmed: 35032196
Nat Microbiol. 2019 Sep;4(9):1432-1442
pubmed: 31439928
Vet Microbiol. 2014 Jul 16;171(3-4):422-31
pubmed: 24636162
Microb Drug Resist. 2016 Dec;22(8):682-687
pubmed: 27007258
Clin Microbiol Infect. 2019 Oct;25(10):1287.e1-1287.e7
pubmed: 30898722
FEMS Microbiol Ecol. 2018 May 1;94(5):
pubmed: 29668933
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3463-E3470
pubmed: 29581252
Int J Infect Dis. 2016 Nov;52:59-61
pubmed: 27717858
Mol Ecol. 2020 May;29(10):1919-1935
pubmed: 32335957
Front Microbiol. 2018 Feb 13;9:162
pubmed: 29487577
Microb Drug Resist. 2021 Apr;27(4):553-561
pubmed: 32816627
Foodborne Pathog Dis. 2018 Feb;15(2):86-93
pubmed: 29068720
BMC Microbiol. 2019 Jul 30;19(1):174
pubmed: 31362706
J Antimicrob Chemother. 2010 Dec;65(12):2534-7
pubmed: 20889530
Nature. 2022 Feb;602(7895):135-141
pubmed: 34987223
Sci Total Environ. 2019 Jul 15;674:554-562
pubmed: 31022545
J Microbiol Immunol Infect. 2012 Dec;45(6):398-403
pubmed: 23031536
J Food Prot. 2016 Jan;79(1):82-9
pubmed: 26735033
BMC Infect Dis. 2019 Oct 28;19(1):897
pubmed: 31660887
Braz J Microbiol. 2022 Mar;53(1):401-410
pubmed: 34761356
Microb Drug Resist. 2021 Aug;27(8):1071-1078
pubmed: 33417827
PLOS Glob Public Health. 2023 Feb 1;3(2):e0001305
pubmed: 36963007
Emerg Infect Dis. 2019 Jan;25(1):
pubmed: 30561323
Sci Rep. 2022 Jun 7;12(1):9354
pubmed: 35672430
Front Vet Sci. 2020 Nov 25;7:547843
pubmed: 33324692
Foodborne Pathog Dis. 2018 May;15(5):262-268
pubmed: 29364698
J Food Prot. 2009 May;72(5):1082-8
pubmed: 19517738
Travel Med Infect Dis. 2018 Mar - Apr;22:8-17
pubmed: 29482014
Environ Sci Policy. 2021 Oct;124:1-11
pubmed: 36536884
BMC Microbiol. 2014 Nov 19;14:286
pubmed: 25406798
Clin Infect Dis. 2015 Feb 1;60(3):439-52
pubmed: 25301206
Foodborne Pathog Dis. 2015 Aug;12(8):686-92
pubmed: 26086916
Int J Environ Res Public Health. 2022 Dec 23;20(1):
pubmed: 36612565
Int J Microbiol. 2016;2016:5275724
pubmed: 27190518
J Wildl Dis. 2022 Apr 1;58(2):269-278
pubmed: 35255126
J Glob Antimicrob Resist. 2019 Mar;16:152-158
pubmed: 30312831
Lancet Planet Health. 2017 Nov;1(8):e316-e327
pubmed: 29387833
Vet Microbiol. 2018 Apr;217:7-12
pubmed: 29615260
Zool Res. 2017 Mar 18;38(2):55-80
pubmed: 28409502
J Vet Sci. 2014 Dec;15(4):529-36
pubmed: 25530702
PLoS One. 2022 Jan 14;17(1):e0262308
pubmed: 35030183
Sci Rep. 2020 Oct 12;10(1):16990
pubmed: 33046808
PLoS One. 2015 Oct 13;10(10):e0139706
pubmed: 26461270
Ann Trop Med Parasitol. 2005 Dec;99(8):795-802
pubmed: 16297293
Sci Rep. 2020 Dec 14;10(1):21878
pubmed: 33318576
Int J Antimicrob Agents. 2021 Jul;58(1):106364
pubmed: 34044108
Int J Food Microbiol. 2020 May 2;320:108510
pubmed: 31986349
Acta Vet Scand. 2009 Jan 07;51:1
pubmed: 19128459
Ambio. 2022 Sep;51(9):1963-1977
pubmed: 35303258
J Med Microbiol. 2015 Sep;64(9):1087-1093
pubmed: 26296763
Microb Drug Resist. 2015 Feb;21(1):111-6
pubmed: 25313843
Int J Environ Res Public Health. 2019 Oct 05;16(19):
pubmed: 31590350
Lett Appl Microbiol. 2022 Dec;75(6):1549-1558
pubmed: 36038146
Microbiol Immunol. 2016 Sep;60(9):575-85
pubmed: 27474453
Antimicrob Resist Infect Control. 2020 Nov 4;9(1):175
pubmed: 33148323
Vet Res Commun. 2021 Sep;45(2-3):163-170
pubmed: 34041662
J Wildl Dis. 2022 Apr 1;58(2):380-383
pubmed: 35276733
Lancet. 2016 Jan 9;387(10014):176-87
pubmed: 26603922
Crit Rev Microbiol. 2019 Mar;45(2):131-161
pubmed: 31122100
Expert Rev Vaccines. 2005 Feb;4(1):89-101
pubmed: 15757476
Microbiology (Reading). 2022 Oct;168(10):
pubmed: 36287593
BMC Vet Res. 2020 Aug 24;16(1):302
pubmed: 32838793
Sci Total Environ. 2021 Dec 1;798:149205
pubmed: 34375247
Appl Environ Microbiol. 2015 Feb;81(3):812-20
pubmed: 25398864
Infect Drug Resist. 2022 Sep 30;15:5759-5779
pubmed: 36204394
Dis Aquat Organ. 2020 Apr 30;139:87-92
pubmed: 32351239
Microorganisms. 2020 Jan 19;8(1):
pubmed: 31963801
Vet J. 2019 Feb;244:75-82
pubmed: 30825899
Am J Primatol. 2012 Dec;74(12):1071-5
pubmed: 22907634
Nat Commun. 2021 Sep 10;12(1):5384
pubmed: 34508079
J Food Prot. 2018 Jul;81(7):1055-1062
pubmed: 29877733
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5649-54
pubmed: 25792457
Front Microbiol. 2012 Mar 22;3:103
pubmed: 22461782
Int J Med Microbiol. 2013 Aug;303(6-7):331-7
pubmed: 23607972
Front Vet Sci. 2021 Mar 11;8:595152
pubmed: 33778031
PLoS One. 2014 Dec 04;9(12):e113548
pubmed: 25474243
Front Microbiol. 2021 Jun 22;12:628738
pubmed: 34239503
Foodborne Pathog Dis. 2009 Nov;6(9):1067-73
pubmed: 19642918
J Appl Microbiol. 2022 Sep;133(3):1169-1182
pubmed: 35094463
Folia Microbiol (Praha). 2022 Feb;67(1):109-119
pubmed: 34569031
J Infect Dev Ctries. 2020 May 31;14(5):471-478
pubmed: 32525833
BMC Public Health. 2016 Aug 02;16:699
pubmed: 27484086
Lancet Infect Dis. 2013 Jan;13(1):43-54
pubmed: 23103172
Clin Infect Dis. 2018 Mar 5;66(6):963-969
pubmed: 29346620
Int J Antimicrob Agents. 2018 Aug;52(2):135-143
pubmed: 29567094
Microb Drug Resist. 2021 May;27(5):698-705
pubmed: 33085574
Front Microbiol. 2019 Jan 15;9:3358
pubmed: 30697208
Int J Food Microbiol. 2010 Feb 28;137(2-3):281-6
pubmed: 20031243
JAMA Netw Open. 2018 Aug 3;1(4):e181662
pubmed: 30646106
Environ Microbiol Rep. 2012 Feb;4(1):141-6
pubmed: 23757241
Microb Drug Resist. 2014 Oct;20(5):466-71
pubmed: 24786256
Campbell Syst Rev. 2021 Jul 24;17(3):e1188
pubmed: 37016663
Front Microbiol. 2018 Nov 30;9:2928
pubmed: 30555448
Appl Environ Microbiol. 2016 Sep 16;82(19):5910-7
pubmed: 27474712
Vet Microbiol. 2016 Oct 15;194:62-68
pubmed: 27157499
Lancet Infect Dis. 2016 Feb;16(2):161-8
pubmed: 26603172
PLoS One. 2012;7(9):e45729
pubmed: 23029206
Int J Food Microbiol. 2021 May 16;346:109164
pubmed: 33813365
PLoS One. 2014 Feb 28;9(2):e89055
pubmed: 24586500
J Antimicrob Chemother. 2017 May 1;72(5):1310-1313
pubmed: 28158613
Foodborne Pathog Dis. 2022 Mar;19(3):232-240
pubmed: 34941425
Microorganisms. 2016 Feb 04;4(1):
pubmed: 27681906
PLoS One. 2015 Aug 18;10(8):e0136052
pubmed: 26284654