Are scattered microsatellites weak chromosomal markers? Guided mapping reveals new insights into Trachelyopterus (Siluriformes: Auchenipteridae) diversity.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2023
Historique:
received: 26 07 2022
accepted: 22 04 2023
medline: 15 6 2023
pubmed: 13 6 2023
entrez: 13 6 2023
Statut: epublish

Résumé

The scattered distribution pattern of microsatellites is a challenging problem in fish cytogenetics. This type of array hinders the identification of useful patterns and the comparison between species, often resulting in over-limited interpretations that only label it as "scattered" or "widely distributed". However, several studies have shown that the distribution pattern of microsatellites is non-random. Thus, here we tested whether a scattered microsatellite could have distinct distribution patterns on homeologous chromosomes of closely related species. The clustered sites of 18S and 5S rDNA, U2 snRNA and H3/H4 histone genes were used as a guide to compare the (GATA)n microsatellite distribution pattern on the homeologous chromosomes of six Trachelyopterus species: T. coriaceus and Trachelyopterus aff. galeatus from the Araguaia River basin; T. striatulus, T. galeatus and T. porosus from the Amazonas River basin; and Trachelyopterus aff. coriaceus from the Paraguay River basin. Most species had similar patterns of the (GATA)n microsatellite in the histone genes and 5S rDNA carriers. However, we have found a chromosomal polymorphism of the (GATA)n sequence in the 18S rDNA carriers of Trachelyopterus galeatus, which is in Hard-Weinberg equilibrium and possibly originated through amplification events; and a chromosome polymorphism in Trachelyopterus aff. galeatus, which combined with an inversion polymorphism of the U2 snRNA in the same chromosome pair resulted in six possible cytotypes, which are in Hardy-Weinberg disequilibrium. Therefore, comparing the distribution pattern on homeologous chromosomes across the species, using gene clusters as a guide to identify it, seems to be an effective way to further the analysis of scattered microsatellites in fish cytogenetics.

Identifiants

pubmed: 37310952
doi: 10.1371/journal.pone.0285388
pii: PONE-D-22-20703
pmc: PMC10263338
doi:

Substances chimiques

Histones 0
DNA, Ribosomal 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0285388

Informations de copyright

Copyright: © 2023 Haerter et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Chromosoma. 2015 Jun;124(2):221-34
pubmed: 25387401
Gene. 2017 Apr 15;608:20-27
pubmed: 28111257
Hum Mutat. 2007 Jan;28(1):98
pubmed: 17154280
Mol Cell. 2007 Oct 12;28(1):1-13
pubmed: 17936700
PLoS One. 2014 Mar 14;9(3):e90946
pubmed: 24632562
Mar Genomics. 2011 Mar;4(1):25-31
pubmed: 21429462
J Exp Bot. 2015 Sep;66(19):5683-90
pubmed: 25888598
Mol Cytogenet. 2015 Jul 30;8:56
pubmed: 26225139
Sex Dev. 2013;7(6):325-33
pubmed: 24296872
PLoS One. 2013 Jun 27;8(6):e66532
pubmed: 23826099
PLoS One. 2021 Jan 13;16(1):e0245128
pubmed: 33439901
Nature. 1996 Jun 6;381(6582):483
pubmed: 8632820
J Clin Invest. 1998 Jan 15;101(2):487-96
pubmed: 9435322
Genome. 2001 Oct;44(5):903-10
pubmed: 11681615
Genome. 2008 May;51(5):350-6
pubmed: 18438438
Genome Res. 2000 Jul;10(7):967-81
pubmed: 10899146
Comp Cytogenet. 2021 Apr 26;15(2):119-136
pubmed: 33959235
Proc Natl Acad Sci U S A. 1982 Jun;79(12):3798-802
pubmed: 6954524
J Hered. 1988 Nov-Dec;79(6):409-17
pubmed: 3062083
Comp Cytogenet. 2014 Jul 14;8(2):139-51
pubmed: 25147625
Genes (Basel). 2019 Apr 09;10(4):
pubmed: 30970650
Mol Biol Evol. 2004 Jun;21(6):991-1007
pubmed: 14963101
J Hum Genet. 2013 Jul;58(7):446-54
pubmed: 23739127
Cell. 1991 Oct 4;67(1):213-24
pubmed: 1655275
Cytogenet Genome Res. 2015;146(2):136-43
pubmed: 26277929
Sci Rep. 2020 Mar 9;10(1):4276
pubmed: 32152354
J Biol Chem. 1999 May 7;274(19):13176-80
pubmed: 10224073
PLoS One. 2014 May 28;9(5):e97956
pubmed: 24871300
Cytogenet Genome Res. 2021;161(1-2):70-81
pubmed: 33601372
Genome Res. 2006 Apr;16(4):477-84
pubmed: 16533911
Chromosome Res. 2008;16(7):919-33
pubmed: 18688733
Cytogenet Genome Res. 2011;132(4):289-96
pubmed: 21099206
Cytogenet Genome Res. 2014;144(4):325-32
pubmed: 25662193
J Genet. 2013 Apr;92(1):127-30
pubmed: 23640416
Zebrafish. 2019 Feb;16(1):106-114
pubmed: 30457940
Mol Ecol. 2002 Dec;11(12):2453-65
pubmed: 12453231
Int J Mol Sci. 2019 Jun 16;20(12):
pubmed: 31208145
Hereditas. 2004;140(3):185-92
pubmed: 15198708
Cytogenet Genome Res. 2008;120(3-4):351-7
pubmed: 18504364
Genet Mol Biol. 2020 Nov 06;43(4):e20200195
pubmed: 33156892
Mol Genet Genomics. 2016 Jun;291(3):1407-18
pubmed: 26984341
New Phytol. 2012 Nov;196(3):666-670
pubmed: 22966819
Genet Mol Biol. 2020 Jan 13;42(4):e20190151
pubmed: 31968045
RNA Biol. 2013 Apr;10(4):564-71
pubmed: 23588056
Genomics. 1990 Aug;7(4):524-30
pubmed: 1974878
Chromosoma. 2018 Mar;127(1):115-128
pubmed: 29124392
Cytogenet Genome Res. 2021;161(3-4):187-194
pubmed: 33744896
Genet Mol Biol. 2019 Apr-Jun;42(2):365-373
pubmed: 31259363
Nat Rev Mol Cell Biol. 2018 Apr;19(4):229-244
pubmed: 29235574
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3504-9
pubmed: 14993601
Cytogenet Genome Res. 2019;159(3):151-161
pubmed: 31683269
Nucleic Acids Res. 1991 Sep 11;19(17):4780
pubmed: 1891373
Epigenetics Chromatin. 2015 Jan 15;8:3
pubmed: 25788984
Genetics. 2015 Sep;201(1):243-61
pubmed: 26205988
Zebrafish. 2018 Aug;15(4):398-403
pubmed: 29927722
Genes (Basel). 2020 Oct 10;11(10):
pubmed: 33050411
Cytogenet Genome Res. 2018;154(2):99-106
pubmed: 29635248
Cytogenet Genome Res. 2016;148(1):44-51
pubmed: 26992246
Bioinformatics. 2003 Apr 12;19(6):681-5
pubmed: 12691979
Zebrafish. 2018 Oct;15(5):504-514
pubmed: 30048232
EMBO J. 1995 Jun 1;14(11):2570-9
pubmed: 7781610
Cytogenet Genome Res. 2019;158(4):213-224
pubmed: 31352441
Genome Res. 2000 Jan;10(1):72-80
pubmed: 10645952
Nat Genet. 2016 Jan;48(1):22-9
pubmed: 26642241
Annu Rev Ecol Evol Syst. 2008 Dec 1;39:21-42
pubmed: 20419035
Mob Genet Elements. 2013 Jul 1;3(4):e25674
pubmed: 24195012
Sci Rep. 2016 Sep 13;6:33280
pubmed: 27623355
Genetica. 2003 May;118(1):69-81
pubmed: 12733666
Front Genet. 2019 Aug 02;10:678
pubmed: 31428127
Mol Biol Evol. 1987 May;4(3):203-21
pubmed: 3328815
Cytogenet Genome Res. 2014;142(1):40-5
pubmed: 24217024
Cytogenet Genome Res. 2019;158(2):98-105
pubmed: 31158838
Mol Biol Evol. 2005 Mar;22(3):582-8
pubmed: 15601889
Microbiol Mol Biol Rev. 2008 Dec;72(4):686-727
pubmed: 19052325
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
J Hered. 2017 Sep 1;108(6):650-657
pubmed: 28821184
Braz J Biol. 2015 Nov;75(4 Suppl 1):S215-21
pubmed: 26602347
Genes (Basel). 2021 Feb 10;12(2):
pubmed: 33578790
Nat Rev Genet. 2004 Jun;5(6):435-45
pubmed: 15153996
Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6470-5
pubmed: 8692839
Cytogenet Genome Res. 2008;120(3-4):210-9
pubmed: 18504349
Nat Commun. 2013;4:1844
pubmed: 23673629
Cytogenet Genome Res. 2014;144(4):333-40
pubmed: 25720317
EMBO J. 2005 Jun 1;24(11):1988-98
pubmed: 15889141
Cells. 2020 Sep 12;9(9):
pubmed: 32932633
Mol Biol Evol. 1998 Oct;15(10):1275-87
pubmed: 9787434
Front Genet. 2017 Dec 12;8:203
pubmed: 29312435
Cytogenet Genome Res. 2016;149(3):182-190
pubmed: 27504623
Comp Cytogenet. 2017 Mar 6;11(1):143-162
pubmed: 28919955
Proc Natl Acad Sci U S A. 1986 May;83(9):2934-8
pubmed: 3458254
Cytogenet Genome Res. 2020;160(2):94-99
pubmed: 32062647
Zebrafish. 2017 Dec;14(6):536-546
pubmed: 28767325
Comp Cytogenet. 2021 Mar 10;15(1):65-76
pubmed: 33777329
Genetica. 2014 Apr;142(2):119-26
pubmed: 24577679
J Evol Biol. 2013 Feb;26(2):229-46
pubmed: 23323997
Genet Mol Res. 2014 Feb 14;13(3):7094-101
pubmed: 24615114
Am J Hum Genet. 1991 Oct;49(4):746-56
pubmed: 1897522
Genetica. 2020 Feb;148(1):25-32
pubmed: 31997050
Genome Biol Evol. 2017 Sep 1;9(9):2428-2443
pubmed: 28957459
Genet Mol Biol. 2020 May 11;43(2):e20190380
pubmed: 32422648
Cytogenet Genome Res. 2007;119(1-2):91-9
pubmed: 18160787
Zebrafish. 2018 Feb;15(1):55-62
pubmed: 29090985

Auteurs

Chrystian Aparecido Grillo Haerter (CAG)

Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil.

Daniel Rodrigues Blanco (DR)

Universidade Tecnológica Federal do Paraná, Campus Santa Helena, Paraná, Brasil.

Josiane Baccarin Traldi (JB)

Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brasil.

Eliana Feldberg (E)

Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil.

Vladimir Pavan Margarido (VP)

Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil.

Roberto Laridondo Lui (RL)

Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH