Cryo-electron Microscopy of Protein Cages.

3D reconstruction Apoferritin Cryo-electron microscopy Giant viruses Image processing Single particle analysis Viruses

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 14 6 2023
pubmed: 13 6 2023
entrez: 12 6 2023
Statut: ppublish

Résumé

Protein cages are one of the most widely studied objects in the field of cryogenic electron microscopy-encompassing natural and synthetic constructs, from enzymes assisting protein folding such as chaperonin to virus capsids. Tremendous diversity of morphology and function is demonstrated by the structure and role of proteins, some of which are nearly ubiquitous, while others are present in few organisms. Protein cages are often highly symmetrical, which helps improve the resolution obtained by cryo-electron microscopy (cryo-EM). Cryo-EM is the study of vitrified samples using an electron probe to image the subject. A sample is rapidly frozen in a thin layer on a porous grid, attempting to keep the sample as close to a native state as possible. This grid is kept at cryogenic temperatures throughout imaging in an electron microscope. Once image acquisition is complete, a variety of software packages may be employed to carry out analysis and reconstruction of three-dimensional structures from the two-dimensional micrograph images. Cryo-EM can be used on samples that are too large or too heterogeneous to be amenable to other structural biology techniques like NMR or X-ray crystallography. In recent years, advances in both hardware and software have provided significant improvements to the results obtained using cryo-EM, recently demonstrating true atomic resolution from vitrified aqueous samples. Here, we review these advances in cryo-EM, especially in that of protein cages, and introduce several tips for situations we have experienced.

Identifiants

pubmed: 37308646
doi: 10.1007/978-1-0716-3222-2_11
doi:

Types de publication

Review Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

173-210

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

von Borries B, Ruska E, Ruska H (1938) Bakterien und Virus in Übermikroskopischer Aufnahme. Klinische Wochenschrift 17:921–925
doi: 10.1007/BF01775798
Kausche GA, Pfankuch E, Ruska H (1939) Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 27:292–299
doi: 10.1007/BF01493353
Ruska H (1940) Die Sichtbarmachung der bakteriophagen Lyse im Übermikroskop. Naturwissenschaften 28:45–46
doi: 10.1007/BF01486931
Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36
pubmed: 6322001 doi: 10.1038/308032a0
McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17
pubmed: 27572721 doi: 10.1016/bs.mie.2016.05.056
Rohou A, Grigorieff N (2015) CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Ruskin RS, Yu Z, Grigorieff N (2013) Quantitative characterization of electron detectors for transmission electron microscopy. J Struct Biol 184:385–393
pubmed: 24189638 doi: 10.1016/j.jsb.2013.10.016
Kühlbrandt W (2014) Biochemistry. The resolution revolution. Science 343:1443–1444
pubmed: 24675944 doi: 10.1126/science.1251652
Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown P, Grigoras IT, Malinauskaite L, Malinauskas T, Miehling J, Uchanski T, Yu L, Karia D, Pechnikova EV, de Jong E, Keizer J, Bischoff M, McCormack J, Tiemeijer P, Hardwick SW, Chirgadze DY, Murshudov G, Aricescu AR, Scheres SHW (2020) Single-particle cryo-EM at atomic resolution. Nature 587:152–156
pubmed: 33087931 pmcid: 7611073 doi: 10.1038/s41586-020-2829-0
Yip KM, Fischer N, Paknia E, Chari A, Stark H (2020) Atomic-resolution protein structure determination by cryo-EM. Nature 587:157–161
pubmed: 33087927 doi: 10.1038/s41586-020-2833-4
Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state, 2nd edn. Oxford University Press, Oxford/New York
doi: 10.1093/acprof:oso/9780195182187.001.0001
Frank J (2006) Electron tomography methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York
Wan W, Briggs JAG (2016) Chapter thirteen – cryo-electron tomography and subtomogram averaging. In: Crowther RA (ed) Methods in enzymology, vol 579. Academic Press, pp 329–367
Lyumkis D (2019) Challenges and opportunities in cryo-EM single-particle analysis. J Biol Chem 294:5181–5197
pubmed: 30804214 pmcid: 6442032 doi: 10.1074/jbc.REV118.005602
Penczek P, Marko M, Buttle K, Frank J (1995) Double-tilt electron tomography. Ultramicroscopy 60:393–410
pubmed: 8525550 doi: 10.1016/0304-3991(95)00078-X
Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J (2021) Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nature Methods 18:186–193
pubmed: 33542511 pmcid: 7611018 doi: 10.1038/s41592-020-01054-7
Murata K, Zhang Q, Gerardo Galaz-Montoya J, Fu C, Coleman ML, Osburne MS, Schmid MF, Sullivan MB, Chisholm SW, Chiu W (2017) Visualizing adsorption of cyanophage P-SSP7 onto marine Prochlorococcus. Sci Rep 7:44176
pubmed: 28281671 pmcid: 5345008 doi: 10.1038/srep44176
Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, Dougherty MT, Schmid MF, Osburne MS, Chisholm SW, Chiu W (2010) Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol 17:830–836
pubmed: 20543830 pmcid: 2924429 doi: 10.1038/nsmb.1823
Tanaka N, Fujita T, Takahashi Y, Yamasaki J, Murata K, Arai S (2020) Progress in environmental high-voltage transmission electron microscopy for nanomaterials. Philos Trans A Math Phys Eng Sci 378:20190602
pubmed: 33100163
Murata K, Kaneko Y (2018) Visualization of DNA compaction in cyanobacteria by high-voltage cryo-electron tomography. J Vis Exp 137:e57197
Murata K, Hagiwara S, Kimori Y, Kaneko Y (2016) Ultrastructure of compacted DNA in cyanobacteria by high-voltage cryo-electron tomography. Sci Rep 6:34934
pubmed: 27731339 pmcid: 5059737 doi: 10.1038/srep34934
Okamoto K, Miyazaki N, Song C, Maia F, Reddy HKN, Abergel C, Claverie JM, Hajdu J, Svenda M, Murata K (2017) Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy. Sci Rep 7:13291
pubmed: 29038566 pmcid: 5643343 doi: 10.1038/s41598-017-13390-4
Chihara A, Burton-Smith RN, Kajimura N, Mitsuoka K, Okamoto K, Song C, Murata K (2022) A novel capsid protein network allows the characteristic inner membrane structure of Marseilleviridae giant viruses. Sci Rep 12:21428
pubmed: 36504202 pmcid: 9742146 doi: 10.1038/s41598-022-24651-2
Grant T, Rohou A, Grigorieff N (2018) cisTEM, user-friendly software for single-particle image processing. Elife 7:e35383
pubmed: 29513216 pmcid: 5854467 doi: 10.7554/eLife.35383
Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530
pubmed: 23000701 pmcid: 3690530 doi: 10.1016/j.jsb.2012.09.006
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296
pubmed: 28165473 doi: 10.1038/nmeth.4169
Heymann JB, Belnap DM (2007) Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157:3–18
pubmed: 17011211 doi: 10.1016/j.jsb.2006.06.006
Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46
pubmed: 16859925 doi: 10.1016/j.jsb.2006.05.009
Moriya T, Saur M, Stabrin M, Merino F, Voicu H, Huang Z, Penczek PA, Raunser S, Gatsogiannis C (2017) High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J Vis Exp 123:e55448
de la Rosa-Trevín JM, Quintana A, Del Cano L, Zaldívar A, Foche I, Gutiérrez J, Gómez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, Vargas J, Otón J, Sharov G, Vilas JL, Navas J, Conesa P, Kazemi M, Marabini R, Sorzano CO, Carazo JM (2016) Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol 195:93–99
pubmed: 27108186 doi: 10.1016/j.jsb.2016.04.010
Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 16:1146–1152
pubmed: 31591575 pmcid: 6858868 doi: 10.1038/s41592-019-0580-y
Grigorieff N (2016) Frealign: an exploratory tool for single-particle cryo-EM. Methods Enzymol 579:191–226
pubmed: 27572728 pmcid: 6760665 doi: 10.1016/bs.mie.2016.04.013
van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24
pubmed: 8742718 doi: 10.1006/jsbi.1996.0004
Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199
pubmed: 8742743 doi: 10.1006/jsbi.1996.0030
Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. Elife 4:e06980
pubmed: 26023829 pmcid: 4471936 doi: 10.7554/eLife.06980
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zhang K (2016) Gctf: real-time CTF determination and correction. J Struct Biol 193:1–12
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Iudin A, Korir PK, Salavert-Torres J, Kleywegt GJ, Patwardhan A (2016) EMPIAR: a public archive for raw electron microscopy image data. Nat Methods 13:387–388
pubmed: 27067018 doi: 10.1038/nmeth.3806
Wu M, Lander GC, Herzik MA Jr (2020) Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. J Struct Biol X 4:100020
pubmed: 32647824 pmcid: 7337053
Burton-Smith RN, Narayana Reddy HK, Svenda M, Abergel C, Okamoto K, Murata K (2021) The 4.4 Å structure of the giant Melbournevirus virion belonging to the Marseilleviridae family. bioRxiv:2021.2007.2014.452405
Russo CJ, Passmore LA (2014) Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–1380
pubmed: 25504723 pmcid: 4296556 doi: 10.1126/science.1259530
Carragher B, Kisseberth N, Kriegman D, Milligan RA, Potter CS, Pulokas J, Reilein A (2000) Leginon: an automated system for acquisition of images from vitreous ice specimens. J Struct Biol 132:33–45
pubmed: 11121305 doi: 10.1006/jsbi.2000.4314
Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD, Kim LY, Potter CS, Carragher B (2018) High resolution single particle cryo-electron microscopy using beam-image shift. J Struct Biol 204:270–275
pubmed: 30055234 pmcid: 6163078 doi: 10.1016/j.jsb.2018.07.015
Zivanov J, Nakane T, Scheres SHW (2020) Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7:253–267
pubmed: 32148853 pmcid: 7055373 doi: 10.1107/S2052252520000081
Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW (2021) New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J 478:4169–4185
pubmed: 34783343 doi: 10.1042/BCJ20210708
Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10:584
pubmed: 23644547 pmcid: 3684049 doi: 10.1038/nmeth.2472
Thon F (1966) Notizen: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Zeitschrift für Naturforschung A 21:476–478
doi: 10.1515/zna-1966-0417
Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum D, Quentin D, Roderer D, Tacke S, Siebolds B, Schubert E, Shaikh TR, Lill P, Gatsogiannis C, Raunser S (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2:218
pubmed: 31240256 pmcid: 6584505 doi: 10.1038/s42003-019-0437-z
Lawson CL, Baker ML, Best C, Bi C, Dougherty M, Feng P, van Ginkel G, Devkota B, Lagerstedt I, Ludtke SJ, Newman RH, Oldfield TJ, Rees I, Sahni G, Sala R, Velankar S, Warren J, Westbrook JD, Henrick K, Kleywegt GJ, Berman HM, Chiu W (2011) EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res 39:D456–D464
pubmed: 20935055 doi: 10.1093/nar/gkq880
Henderson R (2013) Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc Natl Acad Sci USA 110:18037–18041
pubmed: 24106306 pmcid: 3831464 doi: 10.1073/pnas.1314449110
Scheres SH, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. Nat Methods 9(9):853–854
pubmed: 22842542 pmcid: 4912033 doi: 10.1038/nmeth.2115
Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637
pubmed: 22366277 pmcid: 3322646 doi: 10.1016/j.jsb.2012.02.003
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7:e42166
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Wolf M, DeRosier DJ, Grigorieff N (2006) Ewald sphere correction for single-particle electron microscopy. Ultramicroscopy 106:376–382
pubmed: 16384646 doi: 10.1016/j.ultramic.2005.11.001
Russo CJ, Henderson R (2018) Ewald sphere correction using a single side-band image processing algorithm. Ultramicroscopy 187:26–33
pubmed: 29413409 pmcid: 5862657 doi: 10.1016/j.ultramic.2017.11.001
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612
pubmed: 15264254 doi: 10.1002/jcc.20084
Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157:281–287
pubmed: 16963278 doi: 10.1016/j.jsb.2006.06.010
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27:14–25
pubmed: 28710774 doi: 10.1002/pro.3235
Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63–65
pubmed: 24213166 doi: 10.1038/nmeth.2727
Vilas JL, Gómez-Blanco J, Conesa P, Melero R, Miguel de la Rosa-Trevín J, Otón J, Cuenca J, Marabini R, Carazo JM, Vargas J, Sorzano COS (2018) MonoRes: automatic and accurate estimation of local resolution for electron microscopy maps. Structure 26:337–344 e334
pubmed: 29395788 doi: 10.1016/j.str.2017.12.018
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132
pubmed: 15572765 doi: 10.1107/S0907444904019158
Casañal A, Lohkamp B, Emsley P (2019) Current developments in coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci 29:1069–1078
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Croll TI (2018) ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74:519–530
pubmed: 29872003 pmcid: 6096486 doi: 10.1107/S2059798318002425
Zhu D, Wang X, Fang Q, Van Etten JL, Rossmann MG, Rao Z, Zhang X (2018) Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nat Commun 9:1552
pubmed: 29674632 pmcid: 5908801 doi: 10.1038/s41467-018-04051-9
Fang Q, Zhu D, Agarkova I, Adhikari J, Klose T, Liu Y, Chen Z, Sun Y, Gross ML, Van Etten JL, Zhang X, Rossmann MG (2019) Near-atomic structure of a giant virus. Nat Commun 10:388
pubmed: 30674888 pmcid: 6344570 doi: 10.1038/s41467-019-08319-6
Liu S, Luo Y, Wang Y, Li S, Zhao Z, Bi Y, Sun J, Peng R, Song H, Zhu D, Sun Y, Li S, Zhang L, Wang W, Sun Y, Qi J, Yan J, Shi Y, Zhang X, Wang P, Qiu HJ, Gao GF (2019) Cryo-EM structure of the African swine fever virus. Cell Host Microbe 26:836–843 e833
pubmed: 31787524 doi: 10.1016/j.chom.2019.11.004
Wang N, Zhao D, Wang J, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z, Wang X (2019) Architecture of African swine fever virus and implications for viral assembly. Science 366:640–644
pubmed: 31624094 doi: 10.1126/science.aaz1439
Pintilie G, Chiu W (2012) Comparison of Segger and other methods for segmentation and rigid-body docking of molecular components in cryo-EM density maps. Biopolymers 97:742–760
pubmed: 22696409 pmcid: 3402182 doi: 10.1002/bip.22074
Bhella D (2019) Cryo-electron microscopy: an introduction to the technique, and considerations when working to establish a national facility. Biophys Rev 11:515–519
pubmed: 31359340 pmcid: 6682334 doi: 10.1007/s12551-019-00571-w
Burton-Smith RN, Murata K (2021) Cryo-electron microscopy of the giant viruses. Microscopy (Oxford) 70:477–486
doi: 10.1093/jmicro/dfab036
Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135:24–35
pubmed: 23872039 pmcid: 3834153 doi: 10.1016/j.ultramic.2013.06.004
Fernandez-Leiro R, Scheres SHW (2017) A pipeline approach to single-particle processing in RELION. Acta Crystallogr D Struct Biol 73:496–502
pubmed: 28580911 pmcid: 5458491 doi: 10.1107/S2059798316019276
Toussaint L, Bertrand L, Hue L, Crichton RR, Declercq JP (2007) High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sites. J Mol Biol 365:440–452
pubmed: 17070541 doi: 10.1016/j.jmb.2006.10.010

Auteurs

Raymond N Burton-Smith (RN)

Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Natural Sciences, Okazaki, Aichi, Japan.
National Institute for Physiological Sciences (NIPS), National Institute for Natural Sciences, Okazaki, Aichi, Japan.

Kazuyoshi Murata (K)

Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Natural Sciences, Okazaki, Aichi, Japan. kazum@nips.ac.jp.
National Institute for Physiological Sciences (NIPS), National Institute for Natural Sciences, Okazaki, Aichi, Japan. kazum@nips.ac.jp.
Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan. kazum@nips.ac.jp.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Cryoelectron Microscopy Algorithms Image Processing, Computer-Assisted Consensus Software

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes

Classifications MeSH