Intra-population genomic diversity of the bloom-forming cyanobacterium, Aphanizomenon gracile, at low spatial scale.


Journal

ISME communications
ISSN: 2730-6151
Titre abrégé: ISME Commun
Pays: England
ID NLM: 9918205372406676

Informations de publication

Date de publication:
07 Jun 2023
Historique:
received: 23 11 2022
accepted: 24 05 2023
revised: 09 05 2023
medline: 7 6 2023
pubmed: 7 6 2023
entrez: 6 6 2023
Statut: epublish

Résumé

Cyanobacteria are oxygenic photosynthetic bacteria that perform a substantial part of the global primary production. Some species are responsible for catastrophic environmental events, called blooms, which have become increasingly common in lakes and freshwater bodies as a consequence of global changes. Genotypic diversity is considered essential for marine cyanobacterial population, allowing it to cope with spatio-temporal environmental variations and to adapt to specific micro-niches in the ecosystem. This aspect is underestimated in the study of bloom development, however, and given little notice in studies of the ecology of harmful cyanobacteria. Here we compared the genomes of four strains of Aphanizomenon gracile, a species of filamentous toxinogenic cyanobacteria (Nostocales) found worldwide in fresh and brackish water. Millimeter-sized fascicles were isolated from a single water sample and have been maintained in culture since 2010. A comparative study revealed extensive heterogeneity in gene contents, despite similar genome size and high similarity indices. These variations were mainly associated with mobile genetic elements and biosynthetic gene clusters. For some of the latter, metabolomic analysis confirmed the production of related secondary metabolites, such as cyanotoxins and carotenoids, which are thought to play a fundamental role in the cyanobacterial fitness. Altogether, these results demonstrated that an A. gracile bloom could be a highly diverse population at low spatial scale and raised questions about potential exchanges of essential metabolites between individuals.

Identifiants

pubmed: 37280295
doi: 10.1038/s43705-023-00263-3
pii: 10.1038/s43705-023-00263-3
pmc: PMC10244403
doi:

Types de publication

Journal Article

Langues

eng

Pagination

57

Informations de copyright

© 2023. The Author(s).

Références

Yepremian C, Gugger MF, Briand E, Catherine A, Berger C, Quiblier C, et al. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res. 2007;41:4446–56.
doi: 10.1016/j.watres.2007.06.028 pubmed: 17632212
Kardinaal WEA, Tonk L, Janse I, Hol S, Slot P, Huisman J, et al. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl Environ Microbiol. 2007;73:2939–46.
doi: 10.1128/AEM.02892-06 pubmed: 17337540 pmcid: 1892876
Sabart M, Misson B, Jobard M, Bronner G, Donnadieu-Bernard F, Duffaud E, et al. Genetic diversity along the life cycle of the cyanobacterium Microcystis: highlight on the complexity of benthic and planktonic interactions. Environ Microbiol. 2015;17:901–11.
doi: 10.1111/1462-2920.12555 pubmed: 25039792
Martiny AC, Coleman ML, Chisholm SW. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci USA. 2006;103:12552–7.
doi: 10.1073/pnas.0601301103 pubmed: 16895994 pmcid: 1567916
Martínez A, Osburne MS, Sharma AK, DeLong EF, Chisholm SW. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301. Environ Microbiol. 2012;14:1363–77.
doi: 10.1111/j.1462-2920.2011.02612.x pubmed: 22004069
Jackrel SL, White JD, Evans JT, Buffin K, Hayden K, Sarnelle O, et al. Genome evolution and host-microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom-forming Microcystis aeruginosa. Mol Ecol. 2019;28:3994–4011.
doi: 10.1111/mec.15198 pubmed: 31344288
Humbert J-F, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PloS One. 2013;8:e70747.
doi: 10.1371/journal.pone.0070747 pubmed: 23950996 pmcid: 3741299
Pérez-Carrascal OM, Terrat Y, Giani A, Fortin N, Greer CW, Tromas N, et al. Coherence of Microcystis species revealed through population genomics. ISME J. 2019;13:2887–2900.
doi: 10.1038/s41396-019-0481-1 pubmed: 31363173 pmcid: 6863881
Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.
doi: 10.1126/science.1122050 pubmed: 16556843
Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.
doi: 10.1038/nrmicro3378 pubmed: 25435307
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.
doi: 10.1126/science.1248575 pubmed: 24763590
Takaichi S. Carotenoids in Algae: distributions, biosyntheses and functions. Mar Drugs. 2011;9:1101–18.
doi: 10.3390/md9061101 pubmed: 21747749 pmcid: 3131562
Singh SP, Klisch M, Sinha RP, Häder D-P. Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium anabaena variabilis PCC 7937. Photochem Photobiol. 2008;84:1500–5.
doi: 10.1111/j.1751-1097.2008.00376.x pubmed: 18557824
Soto-Liebe K, Méndez MA, Fuenzalida L, Krock B, Cembella A, Vásquez M. PSP toxin release from the cyanobacterium Raphidiopsis brookii D9 (Nostocales) can be induced by sodium and potassium ions. Toxicon Off J Int Soc Toxinology. 2012;60:1324–34.
doi: 10.1016/j.toxicon.2012.09.001
Willis A, Bent SJ, Jameson ID. Morphological changes and genome evolution in Raphidiopsis raciborskii CS-506 after 23 years in living culture. Appl Phycol. 2022;3:189–98.
doi: 10.1080/26388081.2020.1753573
Ledreux A, Thomazeau S, Catherine A, Duval C, Yéprémian C, Marie A, et al. Evidence for saxitoxins production by the cyanobacterium Aphanizomenon gracile in a French recreational water body. Harmful Algae. 2010;10:88–97.
doi: 10.1016/j.hal.2010.07.004

Auteurs

Sébastien Halary (S)

Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005, Paris, France. sebastien.halary@mnhn.fr.

Sébastien Duperron (S)

Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005, Paris, France.

Sandra Kim Tiam (S)

Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005, Paris, France.
UMR5557 Laboratoire d'Ecologie Microbienne, Université de Lyon, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, Lyon, France.

Charlotte Duval (C)

Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005, Paris, France.

Cécile Bernard (C)

Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005, Paris, France.

Benjamin Marie (B)

Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005, Paris, France.

Classifications MeSH