Noise reduction performance of a deep learning-based reconstruction in brain computed tomography images acquired with organ-based tube current modulation.

Computed tomography Deep learning-based reconstruction Image quality assessment Low contrast Organ-based tube current modulation

Journal

Physical and engineering sciences in medicine
ISSN: 2662-4737
Titre abrégé: Phys Eng Sci Med
Pays: Switzerland
ID NLM: 101760671

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 01 02 2023
accepted: 17 05 2023
medline: 7 9 2023
pubmed: 2 6 2023
entrez: 2 6 2023
Statut: ppublish

Résumé

We aimed to evaluate the image quality of brain computed tomography (CT) images reconstructed using deep learning-based reconstruction (DLR) in organ-based tube current modulation (OB-TCM) acquisition. An anthropomorphic head phantom and a cylindrical low-contrast phantom were scanned at the standard dose level for adult brain CT in axial volume acquisition without OB-TCM. Moreover, image acquisition with OB-TCM was performed. The radiation dose on the eye lens was measured using a scintillation fibre-optic dosimeter placed on the anthropomorphic phantom's eye surface. The task transfer function (TTF), contrast-to-noise ratio (CNR), and low-contrast object specific CNR obtained from low-contrast phantom images reconstructed with filtered back projection (FBP), hybrid iterative reconstruction (HIR), and two types of DLR (DLR

Identifiants

pubmed: 37266875
doi: 10.1007/s13246-023-01282-z
pii: 10.1007/s13246-023-01282-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1153-1162

Informations de copyright

© 2023. Australasian College of Physical Scientists and Engineers in Medicine.

Références

Wang J, Duan X, Christner JA et al (2012) Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology 262:191–198. https://doi.org/10.1148/radiol.11110470
doi: 10.1148/radiol.11110470 pubmed: 22190658
Becker HC, Augart D, Karpitschka M et al (2012) Radiation exposure and image quality of normal computed tomography brain images acquired with automated and organ-based tube current modulation multiband filtering and iterative reconstruction. Invest Radiol 47:202–207. https://doi.org/10.1097/rli.0b013e31823a86d5
doi: 10.1097/rli.0b013e31823a86d5 pubmed: 22293512
Kim JS, Kwon SM, Kim JM, Yoon SW (2017) New organ-based tube current modulation method to reduce the radiation dose during computed tomography of the head: evaluation of image quality and radiation dose to the eyes in the phantom study. Radiol Medica 122:601–608. https://doi.org/10.1007/s11547-017-0755-5
doi: 10.1007/s11547-017-0755-5
Nikupaavo U, Kaasalainen T, Reijonen V et al (2015) Lens dose in routine head CT: comparison of different optimization methods with anthropomorphic phantoms. Am J Roentgenol 204:117–123. https://doi.org/10.2214/AJR.14.12763
doi: 10.2214/AJR.14.12763
Gandhi D, Crotty DJ, Stevens GM, Schmidt TG (2015) Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique. Med Phys 42:6572–6578. https://doi.org/10.1118/1.4933197
doi: 10.1118/1.4933197 pubmed: 26520748
Kosaka H, Monzen H, Amano M et al (2020) Radiation dose reduction to the eye lens in head CT using tungsten functional paper and organ-based tube current modulation. Eur J Radiol 124:108814. https://doi.org/10.1016/j.ejrad.2020.108814
doi: 10.1016/j.ejrad.2020.108814 pubmed: 31945674
Singh R, Wu W, Wang G, Kalra MK (2020) Artificial intelligence in image reconstruction: the change is here. Phys Med 79:113–125. https://doi.org/10.1016/j.ejmp.2020.11.012
doi: 10.1016/j.ejmp.2020.11.012 pubmed: 33246273
Higaki T, Nakamura Y, Zhou J et al (2020) Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 27:82–87. https://doi.org/10.1016/j.acra.2019.09.008
doi: 10.1016/j.acra.2019.09.008 pubmed: 31818389
McCollough CH, Bruesewitz MR, McNitt-Gray MF et al (2004) The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: practical tips, artifact examples, and pitfalls to avoid. Med Phys 31:2423–2442. https://doi.org/10.1118/1.1769632
doi: 10.1118/1.1769632 pubmed: 15487722
Shirota G, Gonoi W, Ishida M et al (2015) Brain swelling and loss of gray and white matter differentiation in human postmortem cases by computed tomography. PLoS ONE 10:e0143848. https://doi.org/10.1371/journal.pone.0143848
doi: 10.1371/journal.pone.0143848 pubmed: 26618492 pmcid: 4664263
Bier G, Bongers MN, Ditt H et al (2016) Enhanced gray-white matter differentiation on non-enhanced CT using a frequency selective non-linear blending. Neuroradiology 58:649–655. https://doi.org/10.1007/s00234-016-1674-1
doi: 10.1007/s00234-016-1674-1 pubmed: 26961306
Boone JM, Strauss KJ, Hernandez AM et al (2019) AAPM report No. 293: size-specific dose estimate (SSDE) for head CT. Am Assoc Phys Med. https://doi.org/10.37206/185
doi: 10.37206/185
Willemink MJ, de Jong PA, Leiner T et al (2013) Iterative reconstruction techniques for computed tomography Part1: technical principles. Eur Radiol 23:1623–1631. https://doi.org/10.1007/s00330-012-2765-y
doi: 10.1007/s00330-012-2765-y pubmed: 23314600
Urikura A, Hara T, Ichikawa K et al (2016) Objective assessment of low-contrast computed tomography images with iterative reconstruction. Phys Med 32:992–998. https://doi.org/10.1016/j.ejmp.2016.07.003
doi: 10.1016/j.ejmp.2016.07.003 pubmed: 27422374
Boedeker KL, Cooper VN, Mcnitt-Gray MF (2007) Application of the noise power spectrum in modern diagnostic MDCT: part I. Measurement of noise power spectra and noise equivalent quanta. Phys Med Biol 52:4027–4046. https://doi.org/10.1088/0031-9155/52/14/002
doi: 10.1088/0031-9155/52/14/002 pubmed: 17664593
Kijewski MF, Judy PF (1987) The noise power spectrum of CT images. Phys Med Biol 32:565–575. https://doi.org/10.1088/0031-9155/32/5/003
doi: 10.1088/0031-9155/32/5/003 pubmed: 3588670
Wang G, Vannier MW (1994) Longitudinal resolution in volumetric x-ray computerized tomography—Analytical comparison between conventional and helical computerized tomography. Med Phys 21:429–433
doi: 10.1118/1.597306 pubmed: 8208218
Nickoloff EL (1988) Measurement of the PSF for a CT scanner: appropriate wire diameter and pixel size. Phys Med Biol 33:149–155. https://doi.org/10.1088/0031-9155/33/1/014
doi: 10.1088/0031-9155/33/1/014 pubmed: 3353449
Takata T, Ichikawa K, Mitsui W et al (2017) Object shape dependency of in-plane resolution for iterative reconstruction of computed tomography. Phys Med 33:146–151. https://doi.org/10.1016/j.ejmp.2017.01.001
doi: 10.1016/j.ejmp.2017.01.001 pubmed: 28089191
Urikura A, Ichikawa K, Hara T et al (2014) Spatial resolution measurement for iterative reconstruction by use of image-averaging techniques in computed tomography. Radiol Phys Technol 7:358–366. https://doi.org/10.1007/s12194-014-0273-2
doi: 10.1007/s12194-014-0273-2 pubmed: 24880960
Richard S, Husarik DB, Yadava G et al (2012) Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms. Med Phys 39:4115–4122. https://doi.org/10.1118/1.4725171
doi: 10.1118/1.4725171 pubmed: 22830744
Oostveen LJ, Meijer FJA, de Lange F et al (2021) Deep learning–based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. Eur Radiol 31:5498–5506. https://doi.org/10.1007/s00330-020-07668-x
doi: 10.1007/s00330-020-07668-x pubmed: 33693996 pmcid: 8270865
Ota J, Yokota H, Kobayashi T et al (2022) Head CT dose reduction with organ-based tube current modulation. Med Phys. https://doi.org/10.1002/mp.15467
doi: 10.1002/mp.15467 pubmed: 35060639
Chen B, Christianson O, Wilson JM, Samei E (2014) Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods. Med Phys 41:071909. https://doi.org/10.1118/1.4881519
doi: 10.1118/1.4881519 pubmed: 24989387
Watanabe S, Ichikawa K, Kawashima H et al (2020) Image quality comparison of a nonlinear image-based noise reduction technique with a hybrid-type iterative reconstruction for pediatric computed tomography. Phys Med 76:100–108. https://doi.org/10.1016/j.ejmp.2020.06.015
doi: 10.1016/j.ejmp.2020.06.015 pubmed: 32645588

Auteurs

Shota Watanabe (S)

Radiology Center, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan. shouta-w@med.kindai.ac.jp.

Yuki Kono (Y)

Radiology Center, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.

Shigetoshi Kitaguchi (S)

Radiology Center, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.

Hiroyuki Kosaka (H)

Radiology Center, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.

Kazunari Ishii (K)

Department of Radiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH