Electroencephalography microstates imbalance across the spectrum of early psychosis, autism, and mood disorders.
EEG microstates
Electroencephalography
autism spectrul disorder
mood disorders
psychosis
transdiagnostic approaches
Journal
European psychiatry : the journal of the Association of European Psychiatrists
ISSN: 1778-3585
Titre abrégé: Eur Psychiatry
Pays: England
ID NLM: 9111820
Informations de publication
Date de publication:
29 05 2023
29 05 2023
Historique:
medline:
20
6
2023
pubmed:
29
5
2023
entrez:
28
5
2023
Statut:
epublish
Résumé
Electroencephalography (EEG) microstates translate resting-state temporal dynamics of neuronal networks throughout the brain and could constitute possible markers of psychiatric disorders. We tested the hypothesis of an increased imbalance between a predominant self-referential mode (microstate C) and a decreased attentional mode (microstate D) in psychosis, mood, and autism spectrum disorders. We retrospectively included 135 subjects from an early psychosis outpatient unit, with available eyes-closed resting-state 19 electrodes EEG. Individual-level then group-level modified Microstate class D parameters were systematically decreased in disease groups compared with controls, with an effect size increasing along the psychosis spectrum, but also in autism. There was no difference in class C. C/D ratios of mean duration were increased only in SCZ compared with controls. The decrease in microstate class D may be a marker of stage of psychosis, but it is not specific to it and may rather reflect a shared dimension along the schizophrenia-autism spectrum. C/D microstate imbalance may be more specific to schizophrenia.
Sections du résumé
BACKGROUND
Electroencephalography (EEG) microstates translate resting-state temporal dynamics of neuronal networks throughout the brain and could constitute possible markers of psychiatric disorders. We tested the hypothesis of an increased imbalance between a predominant self-referential mode (microstate C) and a decreased attentional mode (microstate D) in psychosis, mood, and autism spectrum disorders.
METHODS
We retrospectively included 135 subjects from an early psychosis outpatient unit, with available eyes-closed resting-state 19 electrodes EEG. Individual-level then group-level modified
RESULTS
Microstate class D parameters were systematically decreased in disease groups compared with controls, with an effect size increasing along the psychosis spectrum, but also in autism. There was no difference in class C. C/D ratios of mean duration were increased only in SCZ compared with controls.
CONCLUSIONS
The decrease in microstate class D may be a marker of stage of psychosis, but it is not specific to it and may rather reflect a shared dimension along the schizophrenia-autism spectrum. C/D microstate imbalance may be more specific to schizophrenia.
Identifiants
pubmed: 37246142
doi: 10.1192/j.eurpsy.2023.2414
pii: S0924933823024148
pmc: PMC10305759
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e41Références
Mol Neurobiol. 2018 Jun;55(6):5075-5100
pubmed: 28822116
Schizophr Bull. 2013 Mar;39(2):278-86
pubmed: 23354468
Brain Topogr. 2019 Mar;32(2):295-303
pubmed: 30382452
Front Psychiatry. 2021 Dec 17;12:775156
pubmed: 34975577
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14529-34
pubmed: 9826734
Schizophr Bull. 2022 Jan 21;48(1):8-19
pubmed: 33944949
Dev Sci. 2022 Jul;25(4):e13231
pubmed: 35005839
JAMA Psychiatry. 2020 Jul 1;77(7):755-765
pubmed: 32159746
Encephale. 2014 Dec;40(6):447-56
pubmed: 25127895
Psychol Med. 2014 Oct;44(13):2713-26
pubmed: 25066181
Transl Psychiatry. 2020 Aug 24;10(1):300
pubmed: 32839449
Nat Commun. 2020 Jun 18;11(1):3089
pubmed: 32555168
Biol Psychiatry. 2021 Jan 1;89(1):11-19
pubmed: 32736793
Psychol Med. 2023 Apr;53(5):1787-1798
pubmed: 34474696
Front Psychiatry. 2020 Nov 24;11:600606
pubmed: 33329154
Cell. 2019 Dec 12;179(7):1469-1482.e11
pubmed: 31835028
Rev Neurol (Paris). 2023 Apr;179(4):352-360
pubmed: 36907708
Nat Rev Neurosci. 2010 Feb;11(2):100-13
pubmed: 20087360
Psychopharmacology (Berl). 2007 May;191(4):995-1004
pubmed: 17333135
Br J Psychiatry. 2017 Dec;211(6):350-358
pubmed: 28982659
Prog Neuropsychopharmacol Biol Psychiatry. 2022 Jun 8;116:110514
pubmed: 35085607
Front Psychiatry. 2016 Feb 26;7:22
pubmed: 26955358
IEEE Trans Biomed Eng. 1995 Jul;42(7):658-65
pubmed: 7622149
Front Hum Neurosci. 2019 Jun 12;13:173
pubmed: 31244624
Brain Res. 2011 Mar 22;1380:34-41
pubmed: 21078305
Neurophysiol Clin. 2014 Dec;44(6):515-612
pubmed: 25435392
Schizophr Res Cogn. 2015 May 27;2(3):159-165
pubmed: 29379765
Nat Neurosci. 2020 Dec;23(12):1473-1483
pubmed: 32958924
Lancet. 2014 May 10;383(9929):1677-1687
pubmed: 24315522
Aust N Z J Psychiatry. 2005 Nov-Dec;39(11-12):964-71
pubmed: 16343296
J Open Source Softw. 2019;4(44):
pubmed: 35990374
Neuroimage. 2002 May;16(1):41-8
pubmed: 11969316
Schizophr Res. 2007 Dec;97(1-3):163-72
pubmed: 17703921
JAMA Psychiatry. 2016 Feb;73(2):113-20
pubmed: 26719911
J Exp Psychol Gen. 2013 May;142(2):573-603
pubmed: 22774788
Neuroimage. 2021 May 1;231:117861
pubmed: 33592245
Mol Psychiatry. 2022 Jan;27(1):281-295
pubmed: 34079068
Lancet Psychiatry. 2015 Sep;2(9):825-34
pubmed: 26360901
Annu Rev Public Health. 2019 Apr 1;40:373-389
pubmed: 30601725
JAMA Psychiatry. 2021 Jan 01;78(1):47-63
pubmed: 32857118
Psychol Med. 2021 Jan;51(2):264-277
pubmed: 31736458
Front Hum Neurosci. 2020 Oct 08;14:288
pubmed: 33132865
Neuroimage. 2010 Oct 1;52(4):1162-70
pubmed: 20188188
Neuroimage. 2018 Oct 15;180(Pt B):577-593
pubmed: 29196270
Neuropsychopharmacology. 2020 Nov;45(12):2030-2037
pubmed: 32590838
Front Neurosci. 2013 Dec 26;7:267
pubmed: 24431986